Department of Information Technology

Mathematical Foundations of Computer Science II B.Tech -I Sem

S.Divya Asst. Professor J.B.Institute of Engg & Technology Yenkapally, Moinabad(Mandal) Himathnagar(post),Hyderabad

Results Target

Total Strength of the Class:

S. No	Class / Division	No. of Students
a.	First Class with Distinction	
b.	First Class	
c.	Pass Class	

Method of Evaluation

a.	Internal Examination	
b.	Unit Wise Assignments	
c.	Descriptive Exam	
d	Objective	
e.	Final Examination	

Course Objective: To learn and understand the concepts of Computer forensics

J.B.Institute of Engg & Technology Department of Information Technology

Syllabus

Subject Name : MFCS

Subject Code : 53022

Class : B.Tech II-Isem

<u>Sl.No</u>	<u>Unit No:</u>	Details of the unit
		Introduction to MFCS
		Statements and notations, connectives
		Well formed formulas
	Unit I	Truth tables, tautology
01		Equivalence implication, normal forms
•=		Quantifiers, universal quantifiers.
		Introduction to Dradicates
		Introduction to Predicates
		Free and hourd region less
	Unit II	Pulse of informers
02		Consistency
		Droof of contradiction
		Automatic theorem proving
		Automatic theorem proving
		Properties of binary relations
		Equivalence, transitive closure
		Compatibility and partial ordering relations
		Lattices, Hasse diagram
0.2		Inverse function composition of functions
03	Unit III	Recursive functions
		Lattice and its properties
		Algebraic systems examples and general properties
		Semi groups and monads
04	Unit IV	Groups sub groups' homomorphism
		Isomorphism.

		Introduction to Elementary Combinatorics : Basis of Counting	
		Combinations and Permutations	
05	TT :4 X7	With repetitions, Constrained repetitions	
05	Unit	Binomial Coefficients, Binomial multinomial theorems	
		The principles of inclusion – Exclusion	
		Pigeon hole principles and its applications	
		Introduction to Recurrence Relation	
		Generating functions, function of sequences	
		Calculating coefficient of generating function	
		Recurrence Relation,	
06	Unit VI	Solving recurrence relation by substitution and	
		generating funds,	
		Characteristics roots solution of In homogeneous	
		recurrence relation.	
		Introduction to Graph Theory	
07	Unit VII	Representation of Graph	
		DFS , BFS	
		Spanning tree	
		Planar graphs	
08		Crearly theory and applications	
08		Basic concents Isomorphism and sub graphs	
		Multi graphs and Euler circuits	
		Hamiltonian graphs	
		Chromatic numbers	

Guidelines to Students

•

Where will this subject help?

Text Books (TB)

TB1: Elements of DISCRETE MATHEMATICS- A computer oriented Approach-

CLLiu, DP Mohapatra, Third Edition, Tata McGrawHill .

TB2: Mathematical Foundation Of Computer Science by Shahnaz bhathul

Suggested / Reference Books (RB)

- **RB1:** Discrete Mathematics and its applications, Kenneth H.Rosen, Fifth Edition, TMH.
- **RB2:** Discrete Mathematics structures theory and applications, Malik & sen, cengage.
- **RB3:** Discrete Mathematics and its applications, Thomas Koshy, Elsevier.

J.B.Institute of Engg & Technology Department of Information Technology

SUBJECT PLAN :

Subject Name : MFCS

Г

Subject Code : 53022

Class : B.Tech II-Isem Faculty Name : S.Divya	Class	: B.Tech II-Isem	Faculty Name : S.Divya
---	-------	------------------	------------------------

of Hours / lectures available in this Semester / Year 65
of Hours / lectures available in this Semester / Year 65

Unit	Торіс	Total No. of Hours
	Introduction to MFCS	
	Statements and notations, connectives	
	Well formed formulas	
	Truth tables, tautology	
Ι	Equivalence implication, normal forms	
	Quantifiers, universal quantifiers.	
	Introduction to Predicates	
	Predicative logic	
	Free and bound variables	
т	Rules of inference	
11	Consistency	
	Proof of contradiction	
	Automatic theorem proving	
	Properties of binary relations	
	Equivalence ,transitive closure	
	Compatibility and partial ordering relations	
	Lattices, Hasse diagram	
111	Inverse function composition of functions	
	Recursive functions	
187	Laurce and its properties	
IV	Argeoraic systems examples and general properties	
	Groups sub groups' homomorphism	
	oroups sub groups nonionorpinsin	

	Isomorphism.	-
	Introduction to Elementary Combinatories - Pasis of	
	Counting	
	Combinations and Permutations	
	With repetitions Constrained repetitions	-
V	Binomial Coefficients, Binomial multinomial theorems	
	The principles of inclusion – Exclusion	-
	Pigeon hole principles and its applications	
	Introduction to Recurrence Relation	
	Generating functions, function of sequences	
	Calculating coefficient of generating function	
	Recurrence Relation,	
VI		
	Solving recurrence relation by substitution and	
	generating funds,	
	Characteristics roots solution of In homogeneous	
	recurrence relation.	
	Introduction to Graph Theory	
	Representation of Graph	
	DFS . BFS	
VII	Spanning tree	
	Planar graphs	
	Graph theory and applications	
	Basic concepts Isomorphism and sub graphs	
	Multi graphs and Euler circuits	
VIII	Hamiltonian graphs	
	Chromatic numbers	

J.B.Institute of Engg & Technology Department of Information Technology

LESSON PLAN :

Subject Name : MFCS

Subject Code : 53022

Class : B.Tech II-Isem

Faculty Name : S.Divya

Unit I : COMPUTER FORENSIC FUNDAMENTALS

LEARNING OBJECTIVES: Deals with Fundamentals of Computer Forensic and Types in

technology.

LECTURE PLAN:

Total no_ of classes: 11

Unit #	Topic as per JNTU syllabus	Lesson	Suggested	Q	uestic	n	Hand
		#	Books **		Bank		outs
			(Refer the	OQ	DQ	AQ	
			list				
Unit I	Introduction, Statements and	1	TB-1,2	1	1	A1	H1
	notations						
	Connectives	1			1		
	Well formed formulas, Truth	1					
	Tables						
	Problems on truth tables	1					
	tautology	1					
	Problems on tautology	1					
	equivalence implication	1					
	Normal forms.	1					
	Problems on normal forms	1					

OBJECTIVE QUESTIONS :

1.

2.

DESCRIPTIVE QUESTIONS :

1.

2.

ASSIGNMENT QUESTIONS:

- 1. (a) Show that R (PVQ) is a valid conclusion from premises PVQ, $Q \rightarrow R$, $P \rightarrow M$ and $\neg!M$. (b) Construct truth table for $(P \rightarrow Q) \land (R \rightarrow Q) \leftrightarrow (PVR) \rightarrow Q$.
- 2. Show that the following statements is a tautology. ((PVQ) $\Lambda(P \rightarrow R) \Lambda (Q \rightarrow R)$) $\rightarrow R$

UNIT-II : PREDICATES

LEARNING OBJECTIVES: learns about predicates logics and rules of inference.

LECTURE PLAN:

Total No_ of Classes: 06

S.No	Name of the Topic	Reference book code	No. of classes required
1	Introduction, Predicative logic	TB-1,2	1
2	Free & Bound variables and problems		1
3	Rules of inference		1
4	Consistency and problems		1
5	proof of contradiction		1
6	Automatic Theorem Proving		1

OBJECTIVE QUESTIONS :

1. 2.

DESCRIPTIVE QUESTIONS :

1.

2.

ASSIGNMENT QUESTIONS:

1. Explain the use of predicates with suitable examples.

2. Show that the following statements are logically equivalent without using truth table. $\neg P \leftrightarrow Q \Leftrightarrow P \leftrightarrow \neg Q$.

UNIT-III : RELATIONS LEARNING OBJECTIVES: Learns about Relations, Lattices, Hasse Diagram, Inverse and Recursive functions. LECTURE PLAN: Total No_ of Classes: 09

S.No	Name of the Topic	Text/Reference	No. of classes required
		book code	
1	Introduction, Properties of binary Relations	TB-1,2	1
2	Equivalance, transitiva alogura		1
	Equivalence, transitive, closure		1
3	compatibility and partial ordering relations		1
4	lattices		2
5	Hasse diagram		2
6	Functions, inverse function		2
7	Composition of functions		1
8	Recursive functions		1
9	Lattice and its properties		2

OBJECTIVE QUESTIONS :

1.

2.

DESCRIPTIVE QUESTIONS

1.

2.

ASSIGNMENT QUESTIONS:

1. Define the relation R on the set A of positive integers by $(a,b) \in R$ iff a/b can be expressed in the form 2^n. Where m is an arbitrary integer. Show that R is an equivalence relation.

2. Draw the Hasse diagram of $\langle x, \leq \rangle$ where $x = \{2,3,6,12,24,36\}$ and the realtion \leq be such that $x \leq y$ if x divides y.

UNIT-IV : ALGEBRAIC STRUCTURES

✤ LEARNING OBJECTIVES:Learns about Algebraic functions, homomorphism,Isomorphism.

LECTURE PLAN:

Total No_ of Classes: 06

S.No	Name of the Topic	Text/Reference book code	No. of classes required
1	Introduction, algebraic systems	TB 1,2	1
2	Examples and properties.		1
3	Semi groups		2
4	monads.		1
5	Groups and sub groups		1
6	Homomorphism, isomorphism.		1

OBJECTIVE QUESTIONS :

1. 2.

DESCRIPTIVE QUESTIONS :

- 1.
- 2.

ASSIGNMENT QUESTIONS:

1. If (G,*) and (H, Δ) are two groups and f: $G \rightarrow H$ isomorphism, then prove that The kernel of `f' is a normal subgroup.

2. Find all the properties that satisfies for the following algebraic systems under the Binary operations x and +.

(a). Odd integers

(b). All the positive integers.

UNIT-V: ELEMENTARY COMBINATORICS

LEARNING OBJECTIVES: Learns about combinations & Permutations with repetitions.

LECTURE PLAN:

Total No_ of Classes: 06

S.No	Name of the Topic	Text/Reference	No. of classes
		book code	required
1	Introduction, Basis of counting,	TB2	1
2	Combinations & Permutations		2
3	with repetitions, Constrained repetition		1
4	Binomial Coefficients,		1
5	Binomial Multinomial theorems		2
6	the principles of Inclusion – Exclusion.		1

OBJECTIVE QUESTIONS :

1.

2.

```
DESCRIPTIVE QUESTIONS:
```

1.

2.

ASSIGNMENT QUESTIONS:

1. Show that a graph G is self complementary if it has 4n or 4n+1 vertices (n is non negative integer).

2. Show that any simple graph with two or more vertices has at least two vertices of the same degree. (Hint : Use the Pigeon hole principle).

UNIT-VI: RECURRENCE RELATION

LEARNING OBJECTIVES: Learns about recurrence relation, calculating coefficient of generating function and solving.

LECTURE PLAN:

Total No_ of Classes: 06

S.No	Name of the Topic	Text/Referen ce book code	No. of Lecture classes required
1	Introduction, Generating Functions	TB-2	1
2	Function of Sequences Calculating		2

	Coefficient of generating function	
3	Recurrence relations,	1
4	Solving recurrence relation by substitution and Generating funds	2
5	Characteristics roots solution of In homogeneous Recurrence Relation.	1
6	problems	1
7	Problems on relations	1

OBJECTIVE QUESTIONS :

1.

2.

DESCRIPTIVE QUESTIONS :

1.

2.

ASSIGNMENT QUESTIONS:

- 1. Solve the recurrence relation a_n -7 a_{n-1} +10 a_{n-2} =4ⁿ
- 2. Solve the recurrence relation $a_n-4a_{n-1}+4a_{n-2}=(n+2)^2$. $a_0=0$, $a_1=1$

UNIT-VII: GRAPH THEORY.

LEARNING OBJECTIVES: Learns about Representation of graph, DFS, BFS, Spanning tree.

*** LECTURE PLAN:**

Total No_ of Classes: 08

S.No	Name of the Topic	Text/Reference	No. of classes
		book code	required
1	Introduction	TB-2	1
2	Representation of Graph		2
3	Representation of Graph		2
4	DFS		1
5	BFS		1
6	Spanning Trees		1
7	planar Graphs		1
8	problems		1

OBJECTIVE QUESTIONS :

1.

2.

DESCRIPTIVE QUESTIONS :

1. 2.

ASSIGNMENT QUESTIONS:

1. Explain the steps involved in deriving a spanning tree for the given graph using BFS algorithm a d

2Explain the algorithm of DFS traversal of a graph by giving a suitable example

UNIT VIII: GRAPH THEORY AND APPLICATIONS.

✤ LEARNING OBJECTIVES: Learns about sub graphs, Multi graphs and Euler graphs.

LECTURE PLAN:

Total No_ of Classes: 05

S.No	Name of the Topic	Text/Reference	No. of classes
		book code	required
1	Graph Theory and Applications	TB-2	2
2	Basic Concepts Isomorphism and Sub		1
	graphs,		
3	Multi graphs and Euler circuits		1
4	Hamiltonian graphs,		1
5	Chromatic Numbers.		1

OBJECTIVE QUESTIONS :

1.

2.

DESCRIPTIVE QUESTIONS :

1.

2.

ASSIGNMENT QUESTIONS:

1 Define the following terms. Give an example for each

i)Euler path	ii)Euler circuit
iii)Multigraph	iv)Hamiltonian graph
1. 2. Explain the following terms and deter	rmine the number of edges in
i)Complete graph Iii)Cycle graph	ii)Complete biparite graph iv)Path graph

DEPARTMENT OF INFORMATION TECHNOLOGY INDIVIDUAL TIME TABLE

NAME OF THE FACULTY:

Period	1	2	3	4		5	6	7
Day/Time	9.10-10.00	10.00-10.50	10.50-11.40	11.40-12.30	L	01.00-1.50	1.5 0-2.40	2.40-3.30
Mon					U		þ.	
Tue					Ν			
Wed					C			
Thu					Н			
Fri								
Sat								

Name of the Subject: Total no of theory classes : Total no of practical classes : Total no of classes :

J. B.Institue of Engineering & Techology II B.Tech -2009-Batch/I SEM (I-MID DESCRIPTIVE) BRANCH: INFORMATION TECHNOLOGY SUB:

SECTION-A & B

TIME: 60 MINUTES	

Answer any TWO of the following:

b) xxxxxxxxxx

Marks: 10

(2x5=10M)

c) xxxxxxxxxxxxxxxxxx

- 3. xxxxxxxxxxxxxxxx?
- 4. xxxxxxxxxxxx? xxxx?

Marks for Internal Theory Examination

ROLL.NO	NAME OF THE	I MID	II MID
	STUDENT	(Des+Obj+Assign))	Des+Obj+Assign))

Computer forensics: QUESTION BANK 1 (Descriptive)-DQ1

- 1. Define Converse, Contra positive, Inverse of a conditional statement
- 2. Construct truth tables for
 - i) [p->q] ∧[~p->q]
 - ii) $P \rightarrow [\sim q \lor r]$
- 3. Are (p->q)->r and p->(q->r) logically equivalent or not? Verify using laws of logic and truth table
- 4. Prove by direct, indirect, proof by contradiction
 - "If n is odd then n+11 is even"
- 5. Show that $\Rightarrow (\sim q \land (p \rightarrow q)) \rightarrow \sim p$
- 6. Define whether following relations are one-one, onto or both
 - a) $A=\{v, w, x, y, z\}, B=\{1, 2, 3, 4, 5\}, R=\{(v,2), (w,1), (x,3), (y,5)\}$
 - b) $A = \{1, 2, 3, 4, 5\}, B = \{1, 2, 3, 4, 5\}, R = \{(1,2), (2,3), (3,4), (4,5), (5,1)\}$
- 7. $f=x^2-2$, g=x+4. Find gof and fog. State they are one-one, onto or both
- 8. Explain the properties of binary relations
- 9. Write short notes on algebraic structure. Define Identity and Inverse
- 10. A) In how many ways 3 boys share 15 different sized apples if each take 5B) Find the arrangements of letters of MISSISSIPPI
- 11. A) Find the coefficient of x⁹y³ in the expansion of (x+2y)¹²
 B) Find the coefficient of x₁²x₃x₄³x₅⁴ in the expansion of (x₁+x₂+x₃+x₄+x₅)¹⁰
- 12. Solve $a_n=3a_{n-1}$, $n\geq 1$ using generating functions
- 13. Solve the recurrence relation of a_n -7 a_{n-1} +10 a_{n-2} =0 using generating functions

14. Find the minimal spanning tree for the given graph using prim's algorithm

- 15. Define the following graphs with 1 suitable examples for each graph
 - i) Complement graph
- ii) Subgraph

ii) Induced subgraph

iv) Spanning subgraph

Computer forensics: QUESTION BANK 2 (Objective)-OQ1

- 1. Find the number of subsets of $A = \{2, 2, 2, 3, 3, 5, 11\}$.
 - a. 42
 - b. 46
 - c. 47
 - d. 48
- 2. Generating function of (n+2)(n+1) is
 - a. 1/(1-X)²
 - b. $X/(1-X)^2$
 - c. $2/(1-X)^2$
 - d. $1/(1-3X)^2$
- 3. Find a recurrence relation for the number of n-digit ternary sequences that have an even number of 0's.
 - a. $a_n = a_{n-1} + 3^{n-1}$
 - b. $a_n = 2a_{n-1} + 2a_{n-2}$
 - c. $a_n = a_{n-1} + 2a_{n-2}$
 - d. $a_n = a_{n-1} a_{n-2}$
- 4. The maximum number of edges in a simple graph with n vertices is
 - a. n(n-1)/2
 - b. (n-1)/2
 - c. n(n+1)/2
 - d. n(n-1)

- 5. Which is used to find the connected component of graph?
 - a. BFS
 - b. DFS
 - c. Simple Graph
- d. d.Tree

6. A regular graph of degree _____ has no lines.

- a. 0
- b. 1
- c. 2
- d. 3
- 7. BFS stands for
 - a. Best First Search
 - b. Bid First Search
 - c. Breadth First Search
 - d. Bi First Search

8. A graph having loops but no multiple edges called a

- a. Simple graph
- b. multigraph
- c. pseudo graph
- d. weighted graph
- 9. The value of n!/(n-1)! Is
 - a. n
 - b. n!
 - c. n*n
 - d. (n-1)!

10. Count the number of regions in the following graph

- a. 5
- b. 7
- c. 9
- d. 11

11. Eular's rule is

- a. v+e+r=2
- b. v-e+r=2
- c. v-e-r=2
- d. v+e-r=2
- 12. A graph G= (V,E) is called a _____ graph if its vertices V can be partitioned into two subsets V1 and V2 such that each edge of G connects a vertex of V1 to a vertex of V2.
 - a. simple
 - b. bipartite
 - c. complete bipartite
 - d. multi graph

13. A planar graph has only ____ infinite region(s).

- a. one
- b. two
- c. three
- d. four
- 14. If G is a simple graph with n vertices and k components, then G can have at most _____ edges.
 - a. (n-k)(n+k+1)/2
 - b. (n-k)(n-k+1)/2
 - c. (n+k)(n+k+1)/2
 - d. (n-k)(n-k-1)/2
- 15. Two graphs G1 and G2 are called _____ graph if there is a one-to-one correspondence between their vertices and between their edges.
 - a. Homeomorphic
 - b. isomorphic
 - c. complete
 - d. planar
- 16. The number of edges that must be removed before a spanning tree is obtained with n vertices and m edges must be
 - a. m-n+1
 - b. m+n+1
 - c. m-n-1
 - d. m+n-1

17. A given connected graph is a Eular graph if and only if all vertices of G are of

- a. same degree
- b. even degree
- c. odd degree
- d. d. different degree
- 18. An _____ is a graph that possesses a Eular circuit.
 - a. Eular path
 - b. Eular circuit
 - c. Eular graph
 - d. Eular region
- 19. Commutative law is
 - a. AUB = BUA
 - b. A = A
 - c. $(A \cup B) \cup C = A \cup (B \cup C)$
 - d. B = B
- 20. A circuit in a connected graph which includes every vertex of the graph is known as
 - a. Eular
 - b. Universal
 - c. Hamiltonian
 - d. Clique