J.B. INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) **COURSE FILE OF COMPILER DESIGN III B.TECH II SEMESTER** 2015-16 ACADEMIC YEAR **D HIMAGIRI** ASSISTANT PROFESSOR, **CSE DEPARTMENT** http://www.jbiet.edu.in

COURSE PLAN

2015-16

FACULTY DETAILS:	Name of the Facul Designati Departme	on:	HIMAGIRI DANAPANA ASSISTANT PROFESS CSE	OR			
COURSE DETAILS							
Name (Of The Programme::	В.Т	Tech			Batch::	13-17
	Designation::	As	st.Professor				
Yea	ar III –			Semes	ster	II	
	Department::	CS	Ε				
	Title of The Subject	CO	MPILER DESIGN	e e	Subje	ect Code	6756031
	No of Students	137					

CONTRACTOR OF			2015-16
A LAND IS		COURSE PLAN	Regulation: R12
FACULTY DETAILS:	Name of the Faculty:: Designation: Department::		
1. TARGET			
a) Percenta	ge Pass 80		
b) Percenta	ge I class 60		
2. COURSE PLAN	l		
(Please write how yo numerical problems,	u intend to cover the conten demonstration of models, m	ts: i.e., coverage of Units by lectures, gues nodel preparation, or by assignments, etc.)	st lectures, design exercises, solving
A. COVERAGE OF C. ASSIGNMENTS		B. Solving numerical problems D. DESIGN EXERCISES	
3. METHOD OF E	VALUATION		
3.1. 🗌 Conti	nuous Assessment Examina	tions (CAE 1, CAE 2)	
3.2. 🗌 Assig	nments / Seminars		
3.3. 🗍 Mini F	rojects		
3.4. 🔲 Quiz			
3.5. Term	End Examination		
3.6. 🗌 Other	5		

4. List out any new topic(s) or any innovation you would like to introduce in teaching the subject in this Semester.

Parallel architecture based compilers

Signature of HOD Date:

Signature of Faculty Date:

GUIDELINES TO STUDY THE SUBJECT

2015-16

FACULTY DETAILS:

Name of the Faculty:: Designation: Department:: HIMAGIRI DANAPANA ASSISTANT PROFESSOR CSE

Guidelines for Preparing the Course:

Course Description:

The course is intended to teach the students the basic techniques that underlie the practice of Compiler Construction. The course will introduce the theory and tools that can be employed in order to perform syntax-directed translation of a high-level programming language into an executable code.

These techniques can also be employed in wider areas of application, whenever we need a syntaxdirected analysis of symbolic expressions and languages and their translation into a lower-level description. They have multiple applications for man-machine interaction, including verification and program analysis.

In addition to the exposition of techniques for compilation, the course will also discuss various aspects of the run-time environment into which the high-level code is translated. This will provide deeper insights into the more advanced semantics aspects of programming languages, such as recursion, dynamic memory allocation, types and their inferences, object orientation, concurrency and multi-threading.

Course Objectives:

- 1. Compiler writing is a basic element of programming language research. Many language researchers write compilers for the languages they design.
- 2. Many applications have similar properties to one or more phases of a compiler, and compiler expertise and tools can help an application programmer working on other projects besides compilers.

Learning Outcomes:

- 1. Writing a compiler gives a student experience with large-scale applications development. Your compiler program may be the largest program you write as a student. Experience working with really big data structures and complex interactions between algorithms will help you out on your next big programming project.
- 2. Compiler writing is one of the shining triumphs of CS theory. It demonstrates the value of theory over the impulse to just "hack up" a solution.

FACULTY DETAILS:

Name of the Faculty::HIMAGIRI DANAPANADesignation:ASSISTANT PROFESSORDepartment::CSE

On completion of this Subject / Course the student shall be able to:

S.No.	Objectives	Outcomes
1.	Define the Phases of a Compiles	Knowledge/Define
2	Perform lexical analysis	Application of knowledge/Demonstrate
3	Use lexical analyzer generators	Application of knowledge/Demonstrate
4	Read and write grammars for programming language constructs	Understand/Describe
6	Define ambiguous grammars,	Knowledge/Define
7	Define LL(1),	Knowledge/Define
8	Perform Top-Down Parsing ,	Understand/Give Examples
9	Use top-down parser generators	Application of knowledge/Demonstrate
10	Perform Bottom-Up Parsing	Understand/Give Examples
11	Define SLR(1), LR, LALR	Knowledge/Define , Understand/Give Examples
12	Use Bottom-up parser generators	Apply/ Illustrate
13	Perform semantic analysis	Apply/ Solve
14	Define static checking	Knowledge/Define
15	Define intermediate representations	Knowledge/Define
16	Read and write attribute grammars	Understand/Describe
17	Perform local, loop and global optimization	Knowledge/Define , Understand/Give Examples
18	Discover Basic Blocks	Apply/ Solve
19	Create a Control Flow Graph Discover Loops	Apply/ Illustrate
20	Define Data Flow Problems	Knowledge/Define
21	Solve Data Flow Problem	Apply/ Solve

Signature of Faculty Date:

Note: For each of the OBJECTIVE indicate the appropriate OUTCOMES to be achieved. Kindly refer Page 16, to know the illustrative verbs that can be used to state the objectives.

Regulation: R12

FACULTY DETAILS:

Name of the Faculty::HIMAGIRI DANAPANADesignation:ASSISTANT PROFESSORDepartment::CSE

The expected outcomes of the Course / Subject are:

S.No.	General Categories of Outcomes	Specific Outcomes of the Course
A.	An ability to apply knowledge of mathematics, science, and engineering	Compute, Solve
В.	An ability to design and conduct experiments, as well as to analyze and interpret data	Design, Devise
C.	An ability to design a system, component, or process to meet desired needs within realistic Constraints such as economic, environmental, social, political, ethical, health and safety, Manufacturability and sustainability	
D.	An ability to function on multi-disciplinary teams	
E.	An ability to identify, formulate, and solve engineering problems	Estimate
F.	An understanding of professional and ethical responsibility	Knowledge
G.	An ability to communicate effectively	Relate
H.	The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	Prepare
I.	A recognition of the need for, and an ability to engage in life-long learning	Appraise
J.	A knowledge of contemporary issues	
K.	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.	Appraise

Objectives – Outcome Relationship Matrix (Indicate the relationships by 🖾 mark).

Outcomes Objectives	Α	В	С	D	E	F	G	н	I	J	к
1.											
2.											
3.											
4.											
5.											
6.											
7.											
8.											
9.											
10.											

Regulation: R12

FACULTY DETAILS:

 Name of the Faculty::
 HIMAGIRI DANAPANA

 Designation:
 ASSISTANT PROFESSOR

 Department::
 CSE

 The Schedule for the whole Course / Subject is::
 COMPILER DESIGN

S. No.	Description	Duratio	Duration (Date)			
5. NO.	Description	From	То	of Periods		
1.	Overview of Compilation			10		
		14/12/2015	29/1/2016			
2.	Top down Parsing	30/1/2016	12/1/2016	10		
3.	Bottom up parsing	12/1/2016	1/2/2016	10		
4.	Semantic analysis	3/2/2016	6/2/2016	9		
		5/2/2010	0/2/2010	9		
5.	Symbol tables			10		
		15/2/2016	25/2/2016			
6.	Code optimization	26/2/2016	10/3/2016	0		
		20/2/2010	10/3/2010	8		
	Data flow analysis					
7				10		
,		11/3/2016	/26/2016	10		
	Object code generation					
8						
		27/3/2016	9/4/2016	8		

Total No. of Instructional periods available for the course: Hours / Periods

2015-16

UNIT - I

Regulation: R12

FACULTY DETAILS:

 Name of the Faculty::
 HIMAGIRI DANAPANA

 Designation:
 ASSISTANT PROFESSOR

 Department::
 CSE

 The Schedule for the whole Course / Subject is::
 COMPILER DESIGN

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome Nos.	References (Text Book, Journal) Page No to
1.	14/12/2 015	3	Phases of Compilation – Lexical Analysis	1 & 2,A& B	TB1-1.2,TB2-1.3
2	15/12/2 015 - 20/12/2 016	3	Regular Grammar and regular expression for common programming language features	1, A& B	TB1-3.3,TB2- 1.9&2.1
3	21/12/2 015	1	Pass and Phases of translation	1, F	TB-1 1.2.8
4	23/12/2 016	1	Interpretation ,Bootstrapping	1,F	LINK
5	²⁸ 29/12/2 - 015	2	Data structures in compilation – LEX lexical analyzer generator	1,2 & B	TB-1 3.5

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. Additional topics covered, if any, may also be specified ${\rm BOLDLY}.$

 $\ensuremath{\mathsf{3}}.$ Mention the corresponding course objective and out come numbers against each topic.

2015-16

UNIT - II

Regulation: R12

FACULTY DETAILS:

 Name of the Faculty::
 HIMAGIRI DANAPANA

 Designation:
 ASSISTANT PROFESSOR

 Department::
 CSE

 The Schedule for the whole Course / Subject is::
 COMPILER DESIGN

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome Nos.	References (Text Book, Journal) Page No to
1	30/12/2 015- 1/1/201 6	2	Context free grammars	4,6 &A	TB-1 4.2
2	2/1/201 6	1	Top down parsing – Backtracking	8 & B	TB-1 4.4
3	4/1/201 6 - 6/1/201 6	3	LL (1)	7 & B	TB-1 4.4.3
4	8/1/201 6- 9/1/201 6	2	Recursive descent parsing	8 & A	TB-1 4.4.1
5	11/1/20 16	1	Predictive parsing	8 & A	TB-1 4.4.4
6	12/1/20 16	1	Pre-processing steps required for predictive parsing	6, A & B	TB-1 4.4.5

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED. 2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**. MENTION THE CORRESPONDING COURSE OBJECTIVE AND OUT COME NUMBERS AGAINST EACH TOPIC.

2015-16

UNIT - III

Regulation: R12

FACULTY DETAILS:

 Name of the Faculty::
 HIMAGIRI DANAPANA

 Designation:
 ASSISTANT PROFESSOR

 Department::
 CSE

 The Schedule for the whole Course / Subject is::
 COMPILER DESIGN

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome Nos.	References (Text Book, Journal) Page No to
1	12/1/206- 20/1/2016	3	Shift Reduce parsing	11 & A	TB-1 4.5.3
2	22/1/2016- 23/1/2016	3	LR and LALR parsing	11 A	TB-1 4.6
3	25/1/2016	1	Error recovery in parsing	11 E	TB-1 4.8.3
4	27/1/2016	1	handling ambiguous grammar	6 A	TB-1 4.8
5	27/1/2016- 29/1/2016	2	YACC – automatic parser generator	12 K	TB-1 4.9.2

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2015-16

UNIT - IV

Regulation: R12

FACULTY DETAILS:

 Name of the Faculty::
 HIMAGIRI DANAPANA

 Designation:
 ASSISTANT PROFESSOR

 Department::
 CSE

 The Schedule for the whole Course / Subject is::
 COMPILER DESIGN

SI.	Date	No. of Period	Topics / Sub - Topics	Objectives & Outcome	References (Text Book, Journal)
No.		S		Nos.	Page No to
1	3/2/2016	2	Intermediate forms of source Programs – abstract syntax tree	15 & A	TB1-2.8&5.3,TB2- 1.2,3
2	4/2/2016	2	Polish notation and three address codes	15 & A	TB1-5.1,TB2-3.1
3	5/2/2016	2	Attributed grammars	16 & E	TB1-5.2,TB2-3
4	5/2/2016	1	Syntax directed translation	16 & E	TB1-5.4,TB2-3
5	6/2/2016	1	Conversion of popular Programming languages	16 &F	TB1-6,TB2-6.4,6.5
6	6/2/2016	1	Language Constructs into Intermediate code forms,typechecker	16 & F	TB-1 6.4

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2015-16

UNIT - V

Regulation: R12

FACULTY DETAILS:

 Name of the Faculty::
 HIMAGIRI DANAPANA

 Designation:
 ASSISTANT PROFESSOR

 Department::
 CSE

 The Schedule for the whole Course / Subject is::
 COMPILER DESIGN

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome Nos.	References (Text Book, Journal) Page No to
1	15/2/20 16	1	Symbol table format		TB1-2.7,TB2-2.1
2	16/2/20 16	1	Organization for block structures languages		TB1-1.6
3	18/2/20 16	1	Hashing		TB1-2,TB2-2.1
4	20/2/20 16	1	Tree structures representation of scope information		ТВ1-2.7,ТВ2-2.1
5	21/2/20 16,22/2/ 2016	2	 Block structures and non block structure storage allocation: static, Runtime stack heap storage allocation 		B1-7.1,TB2-6
6	23/2/20 4,25/2/2 016	2	Storage allocation for arrays, strings and records.		TB1-7.1,TB2-6

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2015-16

UNIT - VI

Regulation: R12

FACULTY DETAILS:

 Name of the Faculty::
 HIMAGIRI DANAPANA

 Designation:
 ASSISTANT PROFESSOR

 Department::
 CSE

 The Schedule for the whole Course / Subject is::
 COMPILER DESIGN

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome Nos.	References (Text Book, Journal) Page No to
1	26/2/20 16	1	Consideration for Optimization		TB1-8,9
2	27/2/20 16	1	Scope of Optimization		TB1-8.4
3	29/2/20 16,30/2/ 2016	2	local optimization		TB-1 9.7
4	2/3/201 6- 3/3/201 6	1	loop optimization		TB-1 9.7
5	5/3/201 6	1	frequency reduction		TB1-6.1
7	8/3/201 6	1	Folding		TB-1 8.5
8	10/3/20 16	1	DAG representation		TB-1 9.6

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**.

2015-16

UNIT - VII

Regulation: R12

FACULTY DETAILS:

Name of the Faculty::HIMAGIRI DANAPANADesignation:ASSISTANT PROFESSORDepartment::CSEThe Schedule for the whole Course / Subject is::COMPILER DESIGN

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome Nos.	References (Text Book, Journal) Page No to
1	11/3/20 16	1	Flow graph		TB-1 9.1
2	13- 14/3/20 16	2	Data flow equation		TB1-9.2,RB4-17
3	15/3/20 16	1	Global optimization		TB1-9.2,RB4-17
4	16- 17/3/20 16	2	Redundant sub expression elimination		TB1-9.2,RB4-17
5	18- 20/3/20 16	2	Induction variable elements		RB4-18, TB1-9.1
6	22/3/20 16	1	Live variable analysis		RB4-17 ,TB1-9.2
7	26/3/20 16	1	Copy propagation		TB-2 6.7

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED.

2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED BOLDLY.

2015-16

UNIT - VIII

Regulation: R12

FACULTY DETAILS:

 Name of the Faculty::
 HIMAGIRI DANAPANA

 Designation:
 ASSISTANT PROFESSOR

 Department::
 CSE

 The Schedule for the whole Course / Subject is::
 COMPILER DESIGN

SI. No.	Date	No. of Periods	Topics / Sub - Topics	Objectives & Outcome Nos.	References (Text Book, Journal) Page No to
1	27- 28/3/20 16	2	Object code forms		TB-2 9.1
2	29/3/20 16,30/3/ 2016	2	Machine dependent code optimization		TB-2 9.2
3	03/4/20 16- 04/4/20 16	2	register allocation and assignment generic code generation algorithms		
4	08- 09/4/20 16	2	DAG for register allocation.		TB-1 8.5.1

Signature of Faculty Date

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED. 2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED **BOLDLY**. MENTION THE CORRESPONDING COURSE OBJECTIVE AND OUT COME NUMBERS AGAINST EACH TOPIC.

COURSE COMPLETION STATUS

2015-16

Regulation: R12

FACULTY DETAILS:

 Name of the Faculty::
 HIMAGIRI DANAPANA

 Subject::
 COMPILER DESIGN
 Subject Code : 6756031

 Department::
 CSE

 Actual Date of Completion & Remarks, if any

Units	Remarks	Nos. of Objectives Achieved
Unit 1	Learnt about lexical analysis	3
Unit 2	Leant about Top Down parsing	5
Unit 3	Learnt about Bottom – Up parsing	3
Unit 4	Learnt about semantic analysis	2
Unit 5	Leant about intermediate representations	2
Unit 6	Learn about code optimization	2
Unit 7	Learn about code generation	2
Unit 8	Learn about data flow diagrams	2

Signature of Dean of School Date:

Signature of Faculty Date:

NOTE: AFTER THE COMPLETION OF EACH UNIT MENTION THE NUMBER OF OBJECTIVES ACHIEVED.

TUTORIAL SHEETS - I

2015-16

Regulation: R12

FACULTY DETAILS:

Name of the Faculty::	HIMAGIRI DANAPANA
Designation:	ASSISTANT PROFESSOR
Department::	CSE
The Schedule for the whole Course / Subject is::	COMPILER DESIGN

This Tutorial corresponds to Unit Nos.1, 2

Q1. Describe various phases of a compiler? Differentiate a phase and pass? Compare multipass and single pass compiler?

Q2. Explain with one example how LEX program perform lexical analysis for the following patterns in `C': identifier, comments, numerical constants, arithmetic operators.

Q3. .(a) Construct an NFA for regular expression R= (aa b)*ab convert it into an equivalent DFA

(b). Write short notes on bootstrapping process.

Q4. (a) Construct recursive descent parser for the following grammar.

 $\begin{array}{lll} E & \rightarrow & T \: E' \\ E' & \rightarrow & +T \: E' | e \\ T & \rightarrow & F \: T' \\ T' & \rightarrow & ^*FT' | e \\ F & \rightarrow & (E) | id \\ (b) \: Eliminate \: ambiguities in the following grammar. \\ & S \: \rightarrow \: iEtS| \: \: iEtSeS| \: a \\ & E \: \rightarrow \: b| \: c \: | \: d \end{array}$ Q5. (a) What are the difficulties in top down parsing? Explain in detail.

(b) Consider the following grammar $S \rightarrow (L) | a$ $L \rightarrow L, S | S$ Construct leftmost derivations and parse trees for the following sentences: i. (a,(a,a)) ii. (a,((a,a),(a,a))).

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the objectives to which these questions / Problems are related.

Signature of Dean of School Date:

Signature of Faculty Date:

Date: Time:

TUTORIAL SHEETS - II

2015-16

Regulation: R12

FACULTY DETAILS:

Name of the Faculty::	HIMAGIRI DANAPANA
Designation:	ASSISTANT PROFESSOR
Department::	CSE
The Schedule for the whole Course / Subject is::	COMPILER DESIGN

Date: This Tutorial corresponds to Unit Nos.3, 4, 5 Time: Q1. .a) Give the rules for computation of FIRST(X) and FOLLOW(X). Construct FIRST and FOLLOW sets for the following grammar. $E \rightarrow T E'$ $E' \rightarrow +T E'|e$ $T \rightarrow F T'$ $T' \rightarrow *FT'|e$ $F \rightarrow (E)|id$ b) Construct SLR parsing table for following grammar: $E \rightarrow E + T/T$ $T \rightarrow T * F/F$ $F \rightarrow (E)/id.$ Q2. Construct Canonical LR parsing table for the following grammar $\textbf{S}\,\rightarrow\,\textbf{CC}$ $C \rightarrow cC/d$ Q3. Construct LALR parsing table for the following grammar $S \rightarrow CC$ C -→cC/d Q4. (a) Write the quadruples, triples and indirect triples for the expression i. (a+b) *(c+d)*(a+b+c) ii. a * (b + c) (b). Draw syntax tree for the arithmetic expressions

 $A^{*}(b + c) - d/2$ Also write the given expression in postfix notation.

Q5. (a) Write a short note on L-attributed grammars.

(b) It is required to compute the total number of reductions performed to parse a given input. Using synthesized attributes only write the semantic rules to find E.red, the number of reductions performed while reducing on input to E. $E \rightarrow E * T/T$ $T \rightarrow F - T/F$ $F \rightarrow 2/4$ Also draw annotated tree for 4-2-4*2. Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the objectives to which these questions / Problems are related.

Signature of Dean of School Date:

Signature of Faculty Date:

TUTORIAL SHEETS - II

2015-16

Regulation: R12

FACULTY DETAILS:

Name of the Faculty::	HIMAGIRI DANAPANA
Designation:	ASSISTANT PROFESSOR
Department::	CSE

This Tutorial corresponds to Unit Nos.6,7,8

Q1. (a) What is an ordered and unordered symbol table? What is the function of symbol table in the compilation process? Explain.

(b) What are the various attributes of a Symbol Table?

Q2. Explain DAG and its use. Write the procedure to construct the DAG for a statement.

Q3.(a) Explain different principal sources of optimization technique with suitable examples.

b) What is DAG? Construct the DAG for the following basic block

D := B_C E :=A+B B := B+C A := E-D

Q4. Describe, how redundant expression elimination can be done in loop optimization technique, during global optimization.

Q5. a) Explain the concept of object code forms.

(b) Generate optimal machine code for the following C program. main()
{
 int i, a[10];
 while (i<=10) a[i] =0
}</pre>

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the objectives to which these questions / Problems are related.

Signature of Dean of School Date:

Signature of Faculty Date:

Date:

Time:

ILLUSTRATIVE VERBS FOR STATING INSTRUCTIONAL OBJECTIVES

Regulation: R12

These verbs can also be used while framing questions for Continuous Assessment Examinations as well as for End – Semester (final) Examinations.

ILLUSTRATIVE VERBS FOR STATING GENERAL OBJECTIVES

Know	
Comprehend	

Understand Apply Analyze Design Generate Evaluate

ILLUSTRATIVE VERBS FOR STATING SPECIFIC OBJECTIVES:

A. Cognitive Domain

1	2	3	4	5	6
Knowledge Comprehension Understanding		Application	Analysis	Synthesis	Evaluation
		of knowledge & comprehension			judgement
Define	Convert	Change	Breakdown	Categorize	Appraise
Identify	Defend	Compute	Differentiate	Combine	Compare
Label	Describe (a	Demonstrate	Discriminate	Compile	Conclude
List	procedure)	Deduce	Distinguish	Compose	Contrast
Match	Distinguish	Manipulate	Separate	Create	Criticize
Reproduce	Estimate	Modify	Subdivide	Devise	Justify
Select	Explain why/how	Predict		Design	Interpret
State	Extend	Prepare		Generate	Support
	Generalize	Relate		Organize	
	Give examples	Show		Plan	
	Illustrate	Solve		Rearrange	
	Infer			Reconstruct	
	Summarize			Reorganize	
				Revise	

B. Affective	B. Affective Domain		C. Psycho	omotor Domain (ski	ll development)	
Adhere	Resolve	Bend	Dissect	Insert	Perform	Straighten
Assist	Select	Calibrate	Draw	Keep	Prepare	Strengthen
Attend	Serve	Compress	Extend	Elongate	Remove	Time
Change	Share	Conduct	Feed	Limit	Replace	Transfer
Develop		Connect	File	Manipulate	Report	Туре
Help		Convert	Grow	Move precisely	Reset	Weigh
Influence		Decrease	Handle	Operate	Run	
Initiate		Demonstrate	Increase	Paint	Set	

	LESSON PLAN	2015-16	
	Unit-1	Regulation: R12	
Name of the Faculty:			

Name of the Faculty: HIMAGIRI DANAPANA Subject COMPILER DESIGN

Subject Code 6756031

Unit I INSTRUCTIONAL OBJECTIVES:

Session No	Topics to be covered	Time	Ref	Teaching Method
1	Phases of Compilation – Lexical Analysis	50 min	TB1- 1.2,TB2-1.3	Chalk& board ,charts
2	Regular Grammar and regular expression for common programming language features,TB1- 3.3,TB2- 1.9&2.1		3.3,TB2-	Chalk& board ,charts
3	Pass and Phases of translation	50 min	TB-1 1.2.8	Chalk& board ,charts
4	Interpretation	50 min	LINK	Chalk& board ,charts
5	Bootstrapping	50 min	LINK	Chalk& board ,charts
6	Data structures in compilation – LEX lexical analyzer generator.	50 min	TB-1 3.5	Chalk& board ,charts
7				
8				
9				
10				

On completion of this lesson the student shall be able to(Outcomes)

1.

2.

3.

ASSIGNMENT Unit-I

2015-16

Regulation: R12

Assignment / Questions

1. (a) Explain, in detail, lexical analyzer generator.

(b) Describe the lexical errors and various error recovery strategies with suitable examples.

2. (a) Consider the following fragment of 'C' code:

float i, j;

i = i * 70 + j + 2;

.Write the output at all phases of the compiler for the above 'C' code.

(b). Explain the input buffer scheme for scanning the source program. How the use of sentinels can improve its performance? Describe in detail.

3.(a) Write a regular expressions and NFA for the following patterns. Use auxiliary definitions where convenient? i. The set of words having a, e, i, o, u appearing in that order, although not having necessarily consecutively. ii. Comments in C.

(b) Differentiate Interpreter & Compiler?

4. Describe various phases of a compiler? Differentiate a phase and pass? Compare multi-pass and single pass compiler?

5. Explain with one example how LEX program perform lexical analysis for the following patterns in `C': identifier, comments, numerical constants, arithmetic operators.

(b) Write short notes on bootstrapping process.

Signature of Faculty

A TONAL SOLUTION
A DECEMBER OF EXCELLENCE

LESSON PLAN Unit-II

2015-16

Regulation: R12

Name of the Faculty: HIMAGIRI DANAPANA Subject COMPILER DESIGN Unit II INSTRUCTIONAL OBJECTIVES:

Subject Code 6756031

Session No	Topics to be covered	Time	Ref	Teaching Method
1	Context free grammars	50 min	TB-1 4.2	Chalk& board ,PPTs, excercises
2	Top down parsing – Backtracking	50 min	TB-1 4.4	Chalk& board ,PPTs, excercises
3	LL (1)	50 min	TB –1 4.4.3	Chalk& board ,PPTs, excercises
4	Recursive descent parsing	50 min	TB –1 4.4.1	Chalk& board ,PPTs, excercises
5	Predictive parsing	50 min	TB –1 4.4.4	Chalk& board ,PPTs, excercises
6.	Pre-processing steps required for predictive parsing	50 min	TB-1 4.4.5	Chalk& board ,PPTs, excercises

On completion of this lesson the student shall be able to

1.

2.

3.

2015-16

Regulation: R12

Assignment / Questions

1. (a) Construct recursive descent parser for the following grammar. E $\, \rightarrow \,$ T E'

 $\begin{array}{l} E' \rightarrow +T \ E'|e \\ T \rightarrow F \ T' \\ T' \rightarrow *FT'|e \\ F \rightarrow (E)|id \\ (b) \ Eliminate ambiguities in the following grammar. \\ S \rightarrow iEtS| \ iEtSeS| \ a \\ E \rightarrow b| \ c \ | \ d \end{array}$ 2. (a) What are the difficulties in top down parsing? Explain in detail. (b) Consider the following grammar S \rightarrow (L) |a \\ L \rightarrow L, S |S \\ Construct leftmost derivations and parse trees for the following sentences: i. (a,(a,a)) ii. (a,((a,a),(a,a))). \end{array}

3.Construct SLR parsing table for following grammar: $E \rightarrow E + T/T$ $T \rightarrow T * F/F$ $F \rightarrow (E)/id$. 4.(a) What is CFG? Explain in detail.

(a) What is CFG? Explain in detail.
(b) Write short notes on following terms:
i. Parse tree.
ii. LL(k) grammar.

Signature of Faculty

	LESSON PLAN	2015-16
A A A A	Unit-III	Regulation: R12

Name of the Faculty: HIMAGIRI DANAPANA Subject COMPILER DESIGN Unit III INSTRUCTIONAL OBJECTIVES:

Subject Code 6756031

Session Teaching Topics to be covered No Time Ref Method Chalk& Shift Reduce parsing TB-1 board 50 min 1 Exercises 4.5.3 ,PPTs Chalk& 50 min LR and LALR parsing TB-1 4.6 2 board Exercises 50 min ,PPTs TB-1 3 Error recovery in parsing 4.8.3 Chalk& 50 min handling ambiguous grammar 4 TB-1 4.8 board Exercises 50 min ,PPTs YACC – automatic parser generator 5 TB-1 4.9.2

On completion of this lesson the student shall be able to(Outcomes)

1.

2.

3.

ASSIGNMENT Unit-III

2015-16

Assignment / Questions

1. (a) Explain the stack implementation of shift reduce parsing method with an example.(b) Define handle. Give suitable example.

2. Construct Canonical LR parsing table for the following grammar

 $S \rightarrow CC$

 $C \to c C/d$

3. (a) What are the actions of shift-reduce parsers?(b).Construct LALR parsing table for the following grammar.

 $A' \rightarrow A$

 $\begin{array}{l} \mathbf{A} \rightarrow (\mathbf{A}) \\ \mathbf{A} \rightarrow \mathbf{a} \end{array}$

4.(a) Construct LALR parsing table for the following grammar

 $S \to CC$

 $C \to \! cC/\! d$

(b) What do you mean by left most derivation? Explain with an example

5. Write the algorithm to generate the canonical collection of LR(0) items

6. (a) What is an SLR Grammar?

(b) Construct LALR(1) Parse table from the following grammar $S \rightarrow Aa/bAc/dc/bda:$.

Signature of Faculty

	LESSON PLAN	2015-16
A A A	Unit-IV	Regulation: R12

Name of the Faculty: HIMAGIRI DANAPANA Subject COMPILER DESIGN Únit IV

Subject Code 6756031

INSTRUCTIONAL OBJECTIVES:

Session No	Topics to be covered	Time	Ref	Teaching Method
1	Intermediate forms of source Programs – abstract syntax tree	50 min	TB1- 2.8&5.3,T B2-1.2,3	Chalk& board Exercises, PPTs
2	Polish notation and three address codes	50 min	TB1- 5.1,TB2- 3.1	Chalk& board Exercises, PPTs
3	Attributed grammars	50 min	TB1- 5.2,TB2-3	Chalk& board Exercises, PPTs
4	Syntax directed translation	50 min	TB1- 5.4,TB2-3	Chalk& board Exercises, PPTs
5	Conversion of popular Programming languages	50 min	TB1- 6,TB2- 6.4,6.5	Chalk& board Exercises, PPTs
6	Language Constructs into Intermediate code forms	50 min	TB-1 6.4	Chalk& board Exercises, PPTs

On completion of this lesson the student shall be able to (Outcomes) 1.

2.

3.

	ASSIGNMENT	2015-16
A A A	Unit-IV	Regulation: R12

Assignment / Questions

1. (a) Write a note on the specification of a simple type checker.(b) What is a type expression? Explain the equivalence of type expressions with appropriate examples.

2.(a) Draw syntax tree for the arithmetic expressions $A^*(b + c) - d/2$ Also write the given expression in postfix notation. (b) Write the quadruple, triple, indirect triple for the following expression $(x + y)^*(y + z) + (x + y + z)$

3. (a) Describe the overloading of functions and operators with suitable examples.(b) Write a note on polymorphic functions.

4. Write type expressions for the following types.

(a) An array of pointers to reals, where array index ranages from 1 to 100.

(b) A two dimensional array of integers (i.e. an array of array) whose rows are indexed from 0 to 9 and whose columns are indexed from -10 to 10.

(c) Functions whose domains are functions from integers to pointers to integers and whose ranges are records consisting of an integer and a character

5.(a) Write the quadruples, triples and indirect triples for the expression i. (a + b) *(c + d)*(a + b + c)ii. a * (b + c)1 $S \rightarrow AS | b$ $A \rightarrow SA | a$ (b) Write a tag down translation achieves to produce guadruples for Declare F

(b) Write a top-down translation scheme to produce quadruples for Boolean Ex-Pression

6.a) Why are quadruples preferred over triples in an optimizing compiler. Explain

(b) Give the triple representation of an array operation x : = y [i]

(c) Give the syntax directed definition of if else statement.

Signature of Faculty

LESSON PLAN	2015-16
Unit-V	Regulation: R12

Name of the Faculty: HIMAGIRI DANAPANA Únit V

Subject COMPILER DESIGN

Subject Code 6756031

INSTRUCTIONAL OBJECTIVES:

Session No	Topics to be covered	Time	Ref	Teaching Method
1	Symbol table format	50 min	TB1- 2.7,TB2- 2.1	Chalk& board Exercises
2	Organization for block structures languages	50 min	TB1-1.6	Chalk& board Exercises
3	Hashing	50 min	TB1- 2,TB2-2.1	Chalk& board Exercises
4	Tree structures representation of scope information	50 min	TB1- 2.7,TB2- 2.1	Chalk& board Exercises
5	 Block structures and non block structure storage allocation: static, Runtime stack heap storage allocation 	50 min	B1- 7.1,TB2-6	Chalk& board Exercises
6	Tree structures representation of scope information	50 min	TB1- 7.1,TB2-6	Chalk& board Exercises, PPTs

On completion of this lesson the student shall be able to (Outcomes)

1.

2.

3.

ASSIGNMENT Unit-V

2015-16

Assignment / Questions

1. (a) What is an ordered and unordered symbol table? What is the function of symbol table in the compilation process? Explain.

(b) What are the various attributes of a Symbol Table?

2.(a) Compare three different storage allocation strategies.
(b) Consider the following array declaration in 'c'; float a[100][100];
Assume that the main memory in byte addressable and that the array is stored starting from the memory address 100.
What is the address of a[40][50]

3.(a) Explain the hash table with temporary and permanent storage.(b) Reusing the storage space for names.

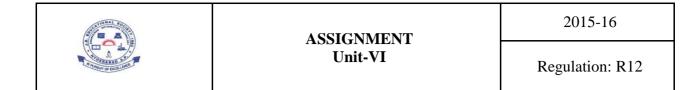
4. Explain symbol table organization using hash tables? Construct hash based structure for symbol table for the variable in the following program.

```
int main()
{
int a1, a2, c1, c2;
char b1;
float d1, d2;
}
```

Signature of Faculty

Unit-VI Regulation: R12	LESSON PLAN	2015-16
		Regulation: R12

Name of the Faculty: HIMAGIRI DANAPANA Subject COMPILER DESIGN Unit VI INSTRUCTIONAL OBJECTIVES:


Subject Code 6756031

Session No	Topics to be covered	Time	Ref	Teaching Method
1	Consideration for Optimization	50 min	TB1-8,9	Chalk& board Exercises
2	Scope of Optimization	50 min	TB1-8.4	Chalk& board Exercises
3	local optimization, loop optimization	50 min	TB-1 9.7	Chalk& board Exercises
4	frequency reduction	50 min	TB-1 9.7	Chalk& board Exercises
5	Folding	50 min	TB1-6.1	Chalk& board Exercises

On completion of this lesson the student shall be able to (Outcomes) 1.

2.

3.

Assignment / Questions

1. Explain different principal sources of optimization technique with suitable examples.

2.Apply loop optimization and code motion for the following program code. begin for i := 1 to n do for j:=1 to n do c[i, j] :=0; for i := 1 to n do for j:=1 to n do 1 of 2 for k :=1 to n do c[i, j] :=c[i, j] +a[i,k] *b [k, j] end 3. (a) What is DAG? Construct the DAG for the following basic block D := B CE :=A+B B := B+C A := E-D (b) What are the legal evaluation orders and names for the values at the nodes for the DAG of problem (a). i. Assuming A, B and C are alive at the end of the basic block? ii. Assuming only A is live at the end? 4. (a) What is loop invariant operation? Write an algorithm for detecting loop in-variant computations. (b) Consider the following program fragment code: int p=1, k=0, n; while(k<n) { p=2*p; k=k+1; } Apply the invariant operation elimination on the above program segment 5.Explain machine dependent code optimization with example 6.Write the importance of global code optimization. Explain redundant sub expression elimination technique across different blocks with example

7. Explain with example the various techniques in loop optimization

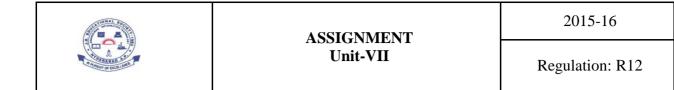
Signature of Faculty

LESSON PLAN Unit-VII Develotions D1
Regulation: R1

Name of the Faculty: HIMAGIRI DANAPANA Únit VII INSTRUCTIONAL OBJECTIVES:

Subject COMPILER DESIGN

Subject Code 6756031


Session No	Topics to be covered	Time	Ref	Teaching Method
1	Flow graph	50 min	TB-1 9.1	Chalk& board Exercises
2	Data flow equation	50 min	TB1- 9.2,RB4- 17	Chalk& board Exercises
3	Global optimization	50 min	TB1- 9.2,RB4- 17	Chalk& board Exercises
4	Redundant sub expression elimination,	50 min	TB1- 9.2,RB4- 17	Chalk& board Exercises
5	Induction variable elements	50 min	RB4-18, TB1-9.1	Chalk& board Exercises
6	Live variable analysis	50 min	RB4-17 ,TB1-9.2	Chalk& board Exercises
7	Copy propagation	50 min	TB-2 6.7	Chalk& board Exercises

On completion of this lesson the student shall be able to

1.

2.

3.

Assignment / Questions

1. Describe, how redundant expression elimination can be done in loop optimization technique, during global optimization. 2. Consider the following program which counts the primes form 2 to n using the sieve method on a suitably large array begin read n for i : = 2 to n do a[i] : = true / * initialize */ count: = 0:for i : 2 to n ** .5 do if a [i] then /* i is a prime */ beain count := count +1 for j : = 2 * i to n by i do a[j] : =false /* j is divisible by i */ end; print count end (a) Propagate out copy statements wherever possible. (b) Is loop jumping possible? If so, do it. (c) Eliminate the induction variables wherever possible 3. (a) What is an Induction variable? Explain with an example. (b) Discuss how induction variables can be detected and how transformation can be applied.

4. Describe, how redundant expression elimination can be done in loop optimization technique, during global optimization.

5. Explain about global data flow analysis. List data flow equations for reaching definition blocks and apply it on the above derived three-address code

Signature of Faculty

	LESSON PLAN	2015-16
A CONTRACT OF CONTRACT	Unit-VIII	Regulation: R12

Name of the Faculty: HIMAGIRI DANAPANA Subject COMPILER DESIGN Unit VIII INSTRUCTIONAL OBJECTIVES:

Subject Code 6756031

Session No	Topics to be covered	Time	Ref	Teaching Method
1	Object code forms	50 min	TB-2 9.1	Chalk& board Exercises
2	Machine dependent code optimization	50 min	TB-2 9.2	Chalk& board Exercises
3	register allocation and assignment generic code generation algorithms	50 min	TB-1 8.6.2	Chalk& board Exercises
4	DAG for register allocation.	50 min	TB-1 8.5.1	Chalk& board Exercises
5	Object code forms	50 min	TB-2 9.1	Chalk& board Exercises

On completion of this lesson the student shall be able to 1.

2.

3.

ASSIGNMENT Unit-VIII

2015-16

Regulation: R12

Assignment / Questions

1.a) Explain the concept of object code forms. (b) Generate optimal machine code for the following C program. [6+10] main() int i, a[10]; while (i<=10) a[i] =0 } 2. (a) Write an algorithm for generating code from a labeled tree. (b) Construct a DAG for the following program code: x=y*z w=p+y y=y*z p=w-x. 3. (a) Explain the different issues in the design of a code generator. (b) Generate code for the following C statements: i. x = f(a) + f(a) + f(a)ii. x = f(a) / g(b,c)iii. x = f(f(a))iv. x = ++f(a)4.(a) Write about global register allocation strategy for loops. (b) Explain code generation from DAG. For the following instructions construct DAG. t1:=a/b t2:=a/b t3:=e - t2 t4:=t1 -t3 t5:=e+t2 t6:=t4 * t5. } 5.(a) What are the various problems that arise in generating good code? Briefly explain them (b) "Good Code generation requires an intimate knowledge of target machine". Justify the statement with an appropriate example

Signature of Faculty