
UNIT-IV

BASIC BEHAVIORAL MODELING-I

CONTENTS

1. Interactions

 Terms and Concepts

 Modeling Techniques

2. Interaction Diagrams

 Terms and Concepts

 Modeling Techniques

Interactions:

Terms and Concepts:

An interaction is a behavior that comprises a set of messages exchanged among objects in a set

of roles within a context to accomplish a purpose. A message is a specification of a

Collaboration between objects that conveys information with the expectation that activity will

ensue.

Context

You may find an interaction wherever objects are linked to one another. You'll find interactions

in the collaboration of objects that exist in the context of your system or subsystem. You will

also find interactions in the context of an operation. Finally, you'll find interactions in the context

of a class.

Most often, you'll find interactions in the collaboration of objects that exist in the context of your

system or subsystem as a whole. For example, in a system for Web commerce, you'll find objects

on the client (such as instances of the classes BookOrder and OrderForm) interacting with one

another. You'll also find objects on the client (again, such as instances of BookOrder) interacting

with objects on the server (such as instances of BackOrderManager). These interactions therefore

not only involve localized collaborations of objects (such as the interactions surrounding

http://umlguide2.uw.hu/gloss01.html#gloss01entry88
http://umlguide2.uw.hu/gloss01.html#gloss01entry100

OrderForm), but they may also cut across many conceptual levels of your system (such as the

interactions surrounding BackOrderManager).

You'll also find interactions among objects in the implementation of an operation, in the context

of a class. You can use interactions to visualize, specify, construct, and document the semantics

of a class. An interaction may also be found in the representation of a component, node, or use

case, each of which is really a kind of UML classifier. In the context of a use case, an interaction

represents a scenario that, in turn, represents one thread through the action of the use case.

Objects and Roles

The objects that participate in an interaction are either concrete things or prototypical things. As

a concrete thing, an object represents something in the real world. For example, p, an instance of

the class Person, might denote a particular human. Alternately, as a prototypical thing, p might

represent any instance of Person.

Note

In a collaboration, the interactions are usually prototypical things that play particular roles, not

specific objects in the real world, although it is sometimes useful to describe collaborations

among particular objects.

In the context of an interaction, you may find instances of classes, components, nodes, and use

cases. Although abstract classes and interfaces, by definition, may not have any direct instances,

you may represent instances of these things in an interaction. Such instances do not represent

direct instances of the abstract class or of the interface, but may represent, respectively, indirect

(or prototypical) instances of any concrete children of the abstract class of some concrete class

that realizes that interface.

Links and Connectors

A link is a semantic connection among objects. In general, a link is an instance of an association.

As Figure 16-2 shows, wherever a class has an association to another class, there may be a link

between the instances of the two classes; wherever there is a link between two objects, one

object can send a message to the other object.

A link specifies a path along which one object can dispatch a message to another (or the same)

object. Most of the time it is sufficient to specify that such a path exists. If you need to be more

precise about how that path exists, you can adorn the appropriate end of the link with one of the

following constraints:

association Specifies that the corresponding object is visible by association

http://umlguide2.uw.hu/ch16lev1sec2.html#ch16fig02

association Specifies that the corresponding object is visible by association

self Specifies that the corresponding object is visible because it is the dispatcher of the

operation

global Specifies that the corresponding object is visible because it is in an enclosing scope

local Specifies that the corresponding object is visible because it is in a local scope

parameter Specifies that the corresponding object is visible because it is a parameter

Messages

Suppose you have a set of objects and a set of links that connect those objects. If that's all you

have, then you have a completely static model that can be represented by an object diagram.

Object diagrams model the state of a society of objects at a given moment in time and are useful

when you want to visualize, specify, construct, or document a static object structure.

A message is the specification of a Collaboration among objects that conveys information with

the expectation that activity will ensue. The receipt of a message instance may be considered an

occurrence of an event. (An occurrence is the UML name for an instance of an event.)

When you pass a message, an action usually results on its receipt. An action may result in a

change in state of the target object and objects accessible from it.

In the UML, you can model several kinds of messages.

Call Invokes an operation on an object; an object may send a message to itself, resulting in

the local invocation of an operation

Return Returns a value to the caller

Send Sends a signal to an object

Create Creates an object

Destroy Destroys an object; an object may commit suicide by destroying itself

Sequencing

When an object passes a message to another object (in effect, delegating some action to the

receiver), the receiving object might in turn send a message to another object, which might send

a message to yet a different object, and so on. This stream of messages forms a sequence. Any

sequence must have a beginning; the start of every sequence is rooted in some process or thread.

Furthermore, any sequence will continue as long as the process or thread that owns it lives. A

Collaboration diagram shows message flow between roles within a collaboration. Messages flow

along connections of the collaboration.

http://umlguide2.uw.hu/gloss01.html#gloss01entry117

 Procedural Sequence

Flat Sequence

Creation, Modification, and Destruction

Most of the time the objects you show participating in an interaction exist for the entire duration

of the interaction. However, in some interactions objects may be created (specified by a create

message) and destroyed (specified by a destroy message). The same is true of links: The

relationships among objects may come and go. To specify if an object or link enters and/or

leaves during an interaction, you can attach a note to its role within a Collaboration diagram.

During an interaction, an object typically changes the values of its attributes, its state, or its roles.

You can represent the modification of an object in a sequence diagram by showing the state or

the values on the lifeline.

Within a sequence diagram, the lifetime, creation, and destruction of objects or roles are

explicitly shown by the vertical extent of their lifelines. Within a Collaboration diagram, creation

and destruction must be indicated using notes. Use sequence diagrams if object lifetimes are

important to show.

Representation

When you model an interaction, you typically include both roles (each one representing objects

that appear in an instance of the interaction) and messages (each one representing the

Collaboration between objects, with some resulting action).

You can visualize those roles and messages involved in an interaction in two ways: by

emphasizing the time ordering of its messages, and by emphasizing the structural organization of

the roles that send and receive messages. In the UML, the first kind of representation is called a

sequence diagram; the second kind of representation is called a Collaboration diagram. Both

sequence diagrams and Collaboration diagrams are kinds of interaction diagrams. (UML also has

a more specialized kind of interaction diagram called a timing diagram, which shows the exact

times at which messages are exchanged by roles. This diagram is not covered in this book. See

the UML Reference Manual for more information.)

Sequence diagrams and Collaboration diagrams are similar, meaning that you can take one and

transform it into the other, although they often show different information, so it may not be so

useful to go back and forth. There are some visual differences. First, sequence diagrams permit

you to model the lifeline of an object. An object's lifeline represents the existence of the object at

a particular time, possibly covering the object's creation and destruction. Second, Collaboration

diagrams permit you to model the structural links that may exist among the objects in an

interaction.

Common Modeling Techniques

Modeling a Flow of Control

The most common purpose for which you'll use interactions is to model the flow of control that

characterizes the behavior of a system as a whole, including use cases, patterns, mechanisms, and

frameworks, or the behavior of a class or an individual operation. Whereas classes, interfaces,

components, nodes, and their relationships model the static aspects of your system, interactions

model its dynamic aspects.

To model a flow of control,

 Set the context for the interaction, whether it is the system as a whole, a class, or an

individual operation.

 Set the stage for the interaction by identifying which objects play a role; set their initial

properties, including their attribute values, state, and role. Name the roles.

 If your model emphasizes the structural organization of these objects, identify the links

that connect them, relevant to the paths of Collaboration that take place in this

interaction. Specify the nature of the links using the UML's standard stereotypes and

constraints, as necessary.

 In time order, specify the messages that pass from object to object. As necessary,

distinguish the different kinds of messages; include parameters and return values to

convey the necessary detail of this interaction.

 Also to convey the necessary detail of this interaction, adorn each object at every moment

in time with its state and role.

Modeling flow of control by time ordering

The below figure is semantically equivalent to the previous one, but it is drawn as a

Collaboration diagram, which emphasizes the structural organization of the objects. This figure

shows the same flow of control, but it also provides a visualization of the links among these

objects.

Modeling Flows of Control by Organization

Interaction Diagrams:

erms and Concepts

An interaction diagram shows an interaction, consisting of a set of objects and their relationships,

including the messages that may be dispatched among them. A sequence diagram is an

interaction diagram that emphasizes the time ordering of messages. Graphically, a sequence

diagram is a table that shows objects arranged along the X axis and messages, ordered in

increasing time, along the Y axis. A Collaboration diagram is an interaction diagram that

emphasizes the structural organization of the objects that send and receive messages.

Graphically, a Collaboration diagram is a collection of vertices and arcs.

Common Properties

An interaction diagram is just a special kind of diagram and shares the same common properties

as do all other diagrams - a name and graphical contents that are a projection into a model. What

distinguishes an interaction diagram from all other kinds of diagrams is its particular content.

Contents

Interaction diagrams commonly contain

 Roles or objects

 Collaborations or links

 Messages

 Like all other diagrams, interaction diagrams may contain notes and constraints.

Sequence Diagrams

A sequence diagram emphasizes the time ordering of messages. you form a sequence diagram by

first placing the objects or roles that participate in the interaction at the top of your diagram,

across the horizontal axis. Typically, you place the object or role that initiates the interaction at

the left, and increasingly more subordinate objects or roles to the right. Next, you arrange the

messages that these objects send and receive along the vertical axis in order of increasing time

from top to bottom. This gives the reader a clear visual cue to the flow of control over time.

http://umlguide2.uw.hu/gloss01.html#gloss01entry89
http://umlguide2.uw.hu/gloss01.html#gloss01entry151
http://umlguide2.uw.hu/gloss01.html#gloss01entry36

Sequence diagrams have two features that distinguish them from Collaboration diagrams.

First, there is the lifeline. An object lifeline is the vertical dashed line that represents the

existence of an object over a period of time. Most objects that appear in an interaction diagram

will be in existence for the duration of the interaction, so these objects are all aligned at the top

of the diagram, with their lifelines drawn from the top of the diagram to the bottom. Objects may

be created during the interaction. Their lifelines start with the receipt of the message create

(drawn to box at the head of the lifeline). Objects may be destroyed during the interaction. Their

lifelines end with the receipt of the message destroy (and are given the visual cue of a large X,

marking the end of their lives).

Second, there is the focus of control. The focus of control is a tall, thin rectangle that

shows the period of time during which an object is performing an action, either directly or

through a subordinate procedure. The top of the rectangle is aligned with the start of the action;

the bottom is aligned with its completion (and can be marked by a return message). You can

show the nesting of a focus of control (caused by recursion, a call to a self-operation, or by a

callback from another object) by stacking another focus of control slightly to the right of its

parent (and can do so to an arbitrary depth).

Collaboration Diagrams

A Collaboration diagram emphasizes the organization of the objects that participate in an

interaction. you form a Collaboration diagram by first placing the objects that participate in the

interaction as the vertices in a graph. Next, you render the links that connect these objects as the

arcs of this graph. The links may have role names to identify them. Finally, you adorn these links

with the messages that objects send and receive. This gives the reader a clear visual cue to the

flow of control in the context of the structural organization of objects that collaborate.

Collaboration diagram have two features that distinguish them from sequence diagrams.

First, there is the path. You render a path corresponding to an association. You also

render paths corresponding to local variables, parameters, global variables, and self access. A

path represents a source of knowledge to an object.

Second, there is the sequence number. To indicate the time order of a message, you prefix

the message with a number (starting with the message numbered 1), increasing monotonically for

each new message in the flow of control (2, 3, and so on). To show nesting, you use Dewey

decimal numbering (1 is the first message, which contains message 1.1 and message 1.2, and so

on). You can show nesting to an arbitrary depth. Note also that, along the same link, you can

show many messages (possibly being sent from different directions), and each will have a unique

sequence number.

Semantic Equivalence

Because they both derive from the same information in the UML's metamodel, sequence

diagrams and communication diagrams are semantically equivalent. As a result, you can take a

diagram in one form and convert it to the other without any loss of information, as you can see in

the previous two figures, which are semantically equivalent. However, this does not mean that

both diagrams will explicitly visualize the same information.

For example, in the previous two figures, the communication diagram shows how the

objects are linked (note the {local} and {global} annotations); the corresponding sequence

diagram does not. Similarly, the sequence diagram shows message return (note the return value

committed), but the corresponding communication diagram does not. In both cases, the two

diagrams share the same underlying model, but each may render some things the other does not.

However, a model entered in one format may lack some of the information shown on the other

format, so although the underlying model can include both kinds of information, the two kinds of

diagrams may lead to different models.

Common Uses

You use interaction diagrams to model the dynamic aspects of a system. These dynamic aspects

may involve the interaction of any kind of instance in any view of a system's architecture,

including instances of classes (including active classes), interfaces, components, and nodes.

When you use an interaction diagram to model some dynamic aspect of a system, you do so in

the context of the system as a whole, a subsystem, an operation, or a class. You can also attach

interaction diagrams to use cases (to model a scenario) and to collaborations (to model the

dynamic aspects of a society of objects).

When you model the dynamic aspects of a system, you typically use interaction diagrams in two

ways.

1. To model flows of control by time ordering

Here you'll use sequence diagrams. Modeling a flow of control by time ordering emphasizes the

passing of messages as they unfold over time, which is a particularly useful way to visualize

dynamic behavior in the context of a use case scenario. Sequence diagrams do a better job of

visualizing simple iteration and branching than do communication diagrams.

2. To model flows of control by organization

Here you'll use communication diagrams. Modeling a flow of control by organization

emphasizes the structural relationships among the instances in the interaction, along which

messages may be passed.

Common Uses

You use interaction diagrams to model the dynamic aspects of a system. These dynamic aspects

may involve the interaction of any kind of instance in any view of a system's architecture,

including instances of classes (including active classes), interfaces, components, and nodes.

When you use an interaction diagram to model some dynamic aspect of a system, you do so in

the context of the system as a whole, a subsystem, an operation, or a class. You can also attach

interaction diagrams to use cases (to model a scenario) and to collaborations (to model the

dynamic aspects of a society of objects).

When you model the dynamic aspects of a system, you typically use interaction diagrams in two

ways.

1. To model flows of control by time ordering

Here you'll use sequence diagrams. Modeling a flow of control by time ordering emphasizes the

passing of messages as they unfold over time, which is a particularly useful way to visualize

dynamic behavior in the context of a use case scenario. Sequence diagrams do a better job of

visualizing simple iteration and branching than do communication diagrams.

2. To model flows of control by organization

Here you'll use communication diagrams. Modeling a flow of control by organization

emphasizes the structural relationships among the instances in the interaction, along which

messages may be passed.

Common Modeling Techniques

Modeling Flows of Control by Time Ordering

Consider the objects that live in the context of a system, subsystem, operation or class. Consider

also the objects and roles that participate in a use case or collaboration. To model a flow of

control that winds through these objects and roles, you use an interaction diagram; to emphasize

the passing of messages as they unfold over time, you use a sequence diagram, a kind of

interaction diagram.

To model a flow of control by time ordering,

 Set the context for the interaction, whether it is a system, subsystem, operation, or class,

or one scenario of a use case or collaboration.

 Set the stage for the interaction by identifying which objects play a role in the interaction.

Lay them out on the sequence diagram from left to right, placing the more important

objects to the left and their neighboring objects to the right.

 Set the lifeline for each object. In most cases, objects will persist through the entire

interaction. For those objects that are created and destroyed during the interaction, set

their lifelines, as appropriate, and explicitly indicate their birth and death with

appropriately stereotyped messages.

 Starting with the message that initiates this interaction, lay out each subsequent message

from top to bottom between the lifelines, showing each message's properties (such as its

parameters), as necessary to explain the semantics of the interaction.

 If you need to visualize the nesting of messages or the points in time when actual

computation is taking place, adorn each object's lifeline with its focus of control.

 If you need to specify time or space constraints, adorn each message with a timing mark

and attach suitable time or space constraints.

 If you need to specify this flow of control more formally, attach pre- and postconditions

to each message.

Modeling Flows of Control by Organization

Consider the objects that live in the context of a system, subsystem, operation, or class. Consider

also the objects and roles that participate in a use case or collaboration. To model a flow of

control that winds through these objects and roles, you use an interaction diagram; to show the

passing of messages in the context of that structure, you use a communication diagram, a kind of

interaction diagram.

o model a flow of control by organization,

 Set the context for the interaction, whether it is a system, subsystem, operation, or class,

or one scenario of a use case or collaboration.

 Set the stage for the interaction by identifying which objects play a role in the interaction.

Lay them out on the communication diagram as vertices in a graph, placing the more

important objects in the center of the diagram and their neighboring objects to the

outside.

 Specify the links among these objects, along which messages may pass.

1. Lay out the association links first; these are the most important ones, because they

represent structural connections.

2. Lay out other links next, and adorn them with suitable path annotations (such as

global and local) to explicitly specify how these objects are related to one another.

 Starting with the message that initiates this interaction, attach each subsequent message

to the appropriate link, setting its sequence number, as appropriate. Show nesting by

using Dewey decimal numbering.

 If you need to specify time or space constraints, adorn each message with a timing mark

and attach suitable time or space constraints.

 If you need to specify this flow of control more formally, attach pre- and postconditions

to each message.

Forward and Reverse Engineering

Forward engineering (the creation of code from a model) is possible for both sequence and

communication diagrams, especially if the context of the diagram is an operation. For example,

using the previous communication diagram, a reasonably clever forward engineering tool could

generate the following Java code for the operation register, attached to the Student class.

public void register() {

 CourseCollection courses = getSchedule();

 for (int i = 0; i < courses.size(); i++)

 courses.item(i).add(this);

 this.registered = true;

}

Reverse engineering (the creation of a model from code) is also possible for both sequence and

communication diagrams, especially if the context of the code is the body of an operation.

Segments of the previous diagram could have been produced by a tool from a prototypical

execution of the register operation.

http://umlguide2.uw.hu/gloss01.html#gloss01entry73
http://umlguide2.uw.hu/gloss01.html#gloss01entry144

