
UNIT 3

Creating Classes

The class statement creates a new class definition. The name of the class immediately follows

the keyword class followed by a colon as follows −

class ClassName:

 'Optional class documentation string'

 class_suite

 The class has a documentation string, which can be accessed via ClassName.__doc__.

 The class_suite consists of all the component statements defining class members, data

attributes and functions.

Example

Following is the example of a simple Python class −

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print "Name : ", self.name, ", Salary: ", self.salary

 The variable empCount is a class variable whose value is shared among all instances of a

this class. This can be accessed as Employee.empCount from inside the class or outside

the class.

 The first method __init__() is a special method, which is called class constructor or

initialization method that Python calls when you create a new instance of this class.

 You declare other class methods like normal functions with the exception that the first

argument to each method is self. Python adds the self argument to the list for you; you do

not need to include it when you call the methods.

A constructor is a special kind of method that Python calls when it instantiates an object

using the definitions found in your class. Python relies on the constructor to perform

tasks such as initializing (assigning values to) any instance variables that the object will

need when it starts. Constructors can also verify that there are enough resources for the

object and perform any other start-up task you can think of.

The name of a constructor is always the same, __init__(). The constructor can accept

arguments when necessary to create the object. When you create a class without a

constructor, Python automatically creates a default constructor for you that doesn’t do

anything. Every class must have a constructor, even if it simply relies on the default

constructor.

Creating Instance Objects

To create instances of a class, you call the class using class name and pass in whatever

arguments its __init__ method accepts.

"This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

Accessing Attributes

You access the object's attributes using the dot operator with object. Class variable would be

accessed using class name as follows −

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

Now, putting all the concepts together −

#!/usr/bin/python

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print "Name : ", self.name, ", Salary: ", self.salary

"This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

"This would create second object of Employee class"

emp2 = Employee("Manni", 5000)

emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" % Employee.empCount

When the above code is executed, it produces the following result −

Name : Zara ,Salary: 2000

Name : Manni ,Salary: 5000

Total Employee 2

You can add, remove, or modify attributes of classes and objects at any time −

emp1.age = 7 # Add an 'age' attribute.

emp1.age = 8 # Modify 'age' attribute.

del emp1.age # Delete 'age' attribute.

Instead of using the normal statements to access attributes, you can use the following functions −

 The getattr(obj, name[, default]) : to access the attribute of object.

 The hasattr(obj,name) : to check if an attribute exists or not.

 The setattr(obj,name,value) : to set an attribute. If attribute does not exist, then it would

be created.

 The delattr(obj, name) : to delete an attribute.

hasattr(emp1, 'age') # Returns true if 'age' attribute exists

getattr(emp1, 'age') # Returns value of 'age' attribute

setattr(emp1, 'age', 8) # Set attribute 'age' at 8

delattr(empl, 'age') # Delete attribute 'age'

Built-In Class Attributes

Every Python class keeps following built-in attributes and they can be accessed using dot

operator like any other attribute −

 __dict__: Dictionary containing the class's namespace.

 __doc__: Class documentation string or none, if undefined.

 __name__: Class name.

 __module__: Module name in which the class is defined. This attribute is "__main__" in

interactive mode.

 __bases__: A possibly empty tuple containing the base classes, in the order of their

occurrence in the base class list.

For the above class let us try to access all these attributes −

#!/usr/bin/python

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print "Name : ", self.name, ", Salary: ", self.salary

print "Employee.__doc__:", Employee.__doc__

print "Employee.__name__:", Employee.__name__

print "Employee.__module__:", Employee.__module__

print "Employee.__bases__:", Employee.__bases__

print "Employee.__dict__:", Employee.__dict__

When the above code is executed, it produces the following result −

Employee.__doc__: Common base class for all employees

Employee.__name__: Employee

Employee.__module__: __main__

Employee.__bases__: ()

Employee.__dict__: {'__module__': '__main__', 'displayCount':

<function displayCount at 0xb7c84994>, 'empCount': 2,

'displayEmployee': <function displayEmployee at 0xb7c8441c>,

'__doc__': 'Common base class for all employees',

'__init__': <function __init__ at 0xb7c846bc>}

Destroying Objects (Garbage Collection)

Python deletes unneeded objects (built-in types or class instances) automatically to free the

memory space. The process by which Python periodically reclaims blocks of memory that no

longer are in use is termed Garbage Collection.

Python's garbage collector runs during program execution and is triggered when an object's

reference count reaches zero. An object's reference count changes as the number of aliases that

point to it changes.

An object's reference count increases when it is assigned a new name or placed in a container

(list, tuple, or dictionary). The object's reference count decreases when it's deleted with del, its

reference is reassigned, or its reference goes out of scope. When an object's reference count

reaches zero, Python collects it automatically.

a = 40 # Create object <40>

b = a # Increase ref. count of <40>

c = [b] # Increase ref. count of <40>

del a # Decrease ref. count of <40>

b = 100 # Decrease ref. count of <40>

c[0] = -1 # Decrease ref. count of <40>

You normally will not notice when the garbage collector destroys an orphaned instance and

reclaims its space. But a class can implement the special method __del__(), called a destructor,

that is invoked when the instance is about to be destroyed. This method might be used to clean

up any non memory resources used by an instance.

Example

This __del__() destructor prints the class name of an instance that is about to be destroyed −

#!/usr/bin/python

class Point:

 def __init(self, x=0, y=0):

 self.x = x

 self.y = y

 def __del__(self):

 class_name = self.__class__.__name__

print class_name, "destroyed"

pt1 = Point()

pt2 = pt1

pt3 = pt1

print id(pt1), id(pt2), id(pt3) # prints the ids of the obejcts

del pt1

del pt2

del pt3

When the above code is executed, it produces following result −

3083401324 3083401324 3083401324

Point destroyed

Note: Ideally, you should define your classes in separate file, then you should import them in

your main program file using import statement.

User-defined compound types
A class in essence defines a new data type . We have been using several of Python’s built-in

types throughout this book (Integers, Reals, Strings, Lists, Dictionaries etc), but we can also

define new types if we wish to. Defining a new type in Python is very easy:

class CLASSNAME:

<statement 1>

<statement 2>

...

<statement n>

Class definitions can appear anywhere in a program, but they are usually near the beginning

(after the import statements). The syntax rules for a class definition are the same as for other

compound statements. There is a header which begins with the keyword, class, followed by the

name of the class, and ending with a colon. In most cases, the statements inside a class definition

should be function definitions. Functions defined inside a class have a special name — they are

called methods of the class.

 Although not required by Python, <statement 1> should be a docstring describing the class and

<statement 2> should bean initialization method. The init method is a special method that is

called just after a variable of the class type is constructed or instantiated. Variables of the class

type are also called instances or objects of that type.

We are now ready to create our own user-defined type: the Point. Consider the concept of a

mathematical point. In two dimensions, a point is two numbers (coordinates) that are treated

collectively as a single object. In mathematical notation, points are often written in parentheses

with a comma separating the coordinates. For example, (0; 0) represents the origin, and (x; y)

represents the point x units to the right and y units up from the origin. A natural way to represent

a point in Python is with two numeric values.

The question, then, is how to group these two values into a compound object. The quick and

dirty solution is to use a list or tuple, and for some applications that might be the best choice. An

alternative is to define a new user-defined compound type, also called a class . This approach

involves a bit more effort, but it has advantages that will become apparent soon. Here’s a simple

definition of Point which we can put into a file called Point.py:

class Point:

"""A class to represent a two-dimensional point"""

def __init__(self):

self.x = 0

self.y = 0

The init Method and self

You will see from the class definition above the special method called init . This method is called

when a Point object is instantiated. To instantiate a Point object, we call a function named (you

guessed it)

Point:

>>> type(Point)

<type ’classobj’>

>>> p = Point()

>>> type(p)

<type ’instance’>

The function Point() is called the class constructor. The variable p is assigned a reference to a

new Point object. When calling the function Point (), Python performs some magic behind the

scenes and calls the init method from within the class constructor.

The init method has a parameter called self. Every class method must have one parameter and

that parameter should be called self. The self parameter is a reference to the object on which the

method is being called

Attributes

The init method above contains the definition of two object variables x and y. Object variables

are

also called attributes of the object. Once a Point object has been instantiated, it is now valid to

refer to its

attributes:

>>> p = Point()

>>> print p.x, p.y

0 0

>>> p.x = 3

>>> p.y = 4

>>> print p.x, p.y

3 4

This syntax is similar to the syntax for selecting a variable from a module, such as math.pi or

string.uppercase. Both modules and instances create their own namespaces, and the syntax for

accessing names contained in each, called attributes, is the same. In this case the attribute we

are selecting is a data item from an instance. The following state diagram shows the result of

these assignments:

x

y

Point

p

4

3

The variable p refers to a Point object, which contains two attributes. Each attribute refers to a

number.

The expression p.x means, Go to the object p refers to and get the value of x. The purpose of dot

notation

is to identify which variable you are referring to unambiguously. You can use dot notation as

part of any

expression, so the following statements are legal:

print '(%d, %d)' % (p.x, p.y)

distanceSquared = p.x * p.x + p.y * p.y

The first line outputs (3, 4); the second line calculates the value 25.

 Methods
Init is an example of a class function or method. We can add as many methods as we like to a

class, and this is one of the reasons OOP is so powerful. It’s quite a different way of thinking

bout programming. Rather than having functions that act on any old data, in OOP, the data

carries the required functionality around with it. Let’s add a few methods to our Point class:

Object
Real world objects shares 2 main characteristics, state and behavior. Human have state (name,

age) and behavior (running, sleeping). Car have state (current speed, current gear) and state

(applying brake, changing gear). Software objects are conceptually similar to real-world objects:

they too consist of state and related behavior. An object stores its state in fields and exposes its

behavior through methods.

Class
Class is a “template” / “blueprint” that is used to create objects. Basically, a class will consists of

field, static field, method, static method and constructor. Field is used to hold the state of the

class (eg: name of Student object). Method is used to represent the behavior of the class (eg: how

a Student object going to stand-up). Constructor is used to create a new Instance of the Class.

Instance
An instance is a unique copy of a Class that representing an Object. When a new instance of a

class is created, the JVM will allocate a room of memory for that class instance.

Instances as arguments

You can pass an instance as an argument in the usual way. For example:

def printPoint(p):

print ’(’ + str(p.x) + ’, ’ + str(p.y) + ’)’

printPoint takes a point as an argument and displays it in the standard format.

If you call printPoint(blank), the output is (3.0, 4.0).

Instances as return values
Functions and methods can also return instances. For example, we may want to calculate the centre of the

rectangle. We can do that by adding a centre method to our class definition:

from Point import *

class Rectangle:

def __init__(self):

self.corner = Point()

self.width = 100

self.height = 100

def centre(self):

c = Point()

c.x = self.corner.x + self.width/2.0

c.y = self.corner.y + self.height/2.0

return c

box = Rectangle()

print box.corner.x, box.corner.y, box.width, box.height

c = box.centre()

print c.x, c.y

If we execute this program, we get:

0 0 100 100

50.0 50.0

Objects are mutable
We can change the state of an object by making an assignment to one of its attributes. For

example, to

change the size of a rectangle without changing its position, we could modify the values of width

and

height:

box.width = box.width + 50

box.height = box.height + 100

Copying
Aliasing can make a program difficult to read because changes made in one place might have

unexpected

effects in another place. It is hard to keep track of all the variables that might refer to a given

object.

Copying an object is often an alternative to aliasing. The copy module contains a function called

copy that

can duplicate any object:

>>> import copy

>>> p1 = Point()

>>> p1.x = 3

>>> p1.y = 4

>>> p2 = copy.copy(p1)

>>> p1 == p2

False

>>> p1.equals(p2)

True the same point, but they contain the same data. To copy a simple object like a Point, which

doesn’t contain

any embedded objects, copy is sufficient. This is called shallow copying. For something like a

Rectangle,

which contains a reference to a Point, copy doesn’t do quite the right thing. It copies the

reference to the

Point object, so both the old Rectangle and the new one refer to a single Point.

If we create a box, b1, in the usual way and then make a copy, b2, using copy, the resulting state

diagram

looks like this:

y

x 0

0

100

width

height

corner

width

height

corner

b1 b2

100

100 100

This is almost certainly not what we want. Can you think why?

Fortunately, the copy module contains a method named deepcopy that copies not only the object

but also

any embedded objects. You will not be surprised to learn that this operation is called a deep

copy .

>>> b2 = copy.deepcopy(b1)

Now b1 and b2 are completely separate objects.

Classes and functions
Time
As another example of a user-defined type, we’ll define a class called Time that records the time of day. The class

definition looks like this:

class Time:

pass

We can create a new Time object and assign attributes for hours, minutes, and

seconds:

time = Time()

time.hours = 11

time.minutes = 59

time.seconds = 30

The state diagram for the Time object looks like this:

Time

Hours 11

Minutes 59

Seconds 30

As an exercise, write a function printTime that takes a Time object

As a second exercise, write a boolean function after that takes two Time objects, t1 and t2, as arguments, and

returns True if t1 follows t2 chronologically and False otherwise.

Pure functions
In the next few sections, we’ll write two versions of a function called addTime, which calculates

the sum of two Times. They will demonstrate two kinds of functions: pure functions and

modifiers. The following is a rough version of addTime:

def addTime(t1, t2):

 sum = Time()

 sum.hours = t1.hours + t2.hours

 sum.minutes = t1.minutes + t2.minutes

 sum.seconds = t1.seconds + t2.seconds

 return sum

The function creates a new Time object, initializes its attributes, and returns a reference to the

new object. This is called a pure function because it does not modify any of the objects passed to

it as arguments and it has no side effects, such as displaying a value or getting user input. Here is

an example of how to use this function. We’ll create two Time objects: currentTime, which

contains the current time; and breadTime, which contains the amount of time it takes for a

breadmaker to make bread. Then we’ll use addTime to figure out when the bread will be done. If

you haven’t finished writing printTime yet, take a look ahead to Section 14.2 before you try this:

>>> currentTime = Time()

>>> currentTime.hours = 9

>>> currentTime.minutes = 14

>>> currentTime.seconds = 30

>>> breadTime = Time()

>>> breadTime.hours = 3

>>> breadTime.minutes = 35

>>> breadTime.seconds = 0

>>> doneTime = addTime(currentTime, breadTime)

>>> printTime(doneTime)

The output of this program is 12:49:30, which is correct. On the other hand, there are cases

where the result is not correct. Can you think of one?The problem is that this function does not

deal with cases where the number of

seconds or minutes adds up to more than sixty. When that happens, we have to “carry” the extra

seconds into the minutes column or the extra minutes into the hours column. Here’s a second

corrected version of the function:

def addTime(t1, t2):

sum = Time()

sum.hours = t1.hours + t2.hours

sum.minutes = t1.minutes + t2.minutes

sum.seconds = t1.seconds + t2.seconds

if sum.seconds >= 60:

sum.seconds = sum.seconds - 60

sum.minutes = sum.minutes + 1

if sum.minutes >= 60:

sum.minutes = sum.minutes - 60

sum.hours = sum.hours + 1

return sum

Although this function is correct, it is starting to get big. Later we will suggest

an alternative approach that yields shorter code.

Modifiers
There are times when it is useful for a function to modify one or more of the objects it gets as

arguments. Usually, the caller keeps a reference to the objects it passes, so any changes the

function makes are visible to the caller. Functions that work this way are called modifiers.

increment, which adds a given number of seconds to a Time object, would be written most

naturally as a modifier. A rough draft of the function looks like this:

def increment(time, seconds):

time.seconds = time.seconds + seconds

if time.seconds >= 60:

time.seconds = time.seconds - 60

time.minutes = time.minutes + 1

if time.minutes >= 60:

time.minutes = time.minutes - 60

time.hours = time.hours + 1

The first line performs the basic operation; the remainder deals with the special cases we saw

before.Is this function correct? What happens if the parameter seconds is much greater than

sixty? In that case, it is not enough to carry once; we have to keep doing it until seconds is less

than sixty. One solution is to replace the if statements with

while statements:

def increment(time, seconds):

time.seconds = time.seconds + seconds

while time.seconds >= 60:

time.seconds = time.seconds - 60

time.minutes = time.minutes + 1

while time.minutes >= 60:

time.minutes = time.minutes - 60

time.hours = time.hours + 1

This function is now correct, but it is not the most efficient solution. As an exercise, rewrite this

function so that it doesn’t contain any loops. As a second exercise, rewrite increment as a pure

function, and write function calls to both versions.

Python Exceptions Handling

Python provides two very important features to handle any unexpected error in your Python

programs and to add debugging capabilities in them −

 Exception Handling: This would be covered in this tutorial. Here is a list standard

Exceptions available in Python: Standard Exceptions.

 Assertions: This would be covered in Assertions in Python tutorial.

List of Standard Exceptions −

http://www.tutorialspoint.com/python/standard_exceptions.htm
http://www.tutorialspoint.com/python/assertions_in_python.htm

EXCEPTION NAME DESCRIPTION

Exception Base class for all exceptions

StopIteration
Raised when the next() method of an iterator

does not point to any object.

SystemExit Raised by the sys.exit() function.

StandardError
Base class for all built-in exceptions except

StopIteration and SystemExit.

ArithmeticError
Base class for all errors that occur for numeric

calculation.

OverflowError
Raised when a calculation exceeds maximum

limit for a numeric type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisonError
Raised when division or modulo by zero takes

place for all numeric types.

AssertionError
Raised in case of failure of the Assert

statement.

AttributeError
Raised in case of failure of attribute reference

or assignment.

EOFError

Raised when there is no input from either the

raw_input() or input() function and the end of

file is reached.

ImportError Raised when an import statement fails.

KeyboardInterrupt
Raised when the user interrupts program

execution, usually by pressing Ctrl+c.

LookupError Base class for all lookup errors.

IndexError

KeyError

Raised when an index is not found in a

sequence.

Raised when the specified key is not found in

the dictionary.

NameError
Raised when an identifier is not found in the

local or global namespace.

UnboundLocalError

EnvironmentError

Raised when trying to access a local variable in

a function or method but no value has been

assigned to it.

Base class for all exceptions that occur outside

the Python environment.

IOError

IOError

Raised when an input/ output operation fails,

such as the print statement or the open()

function when trying to open a file that does not

exist.

Raised for operating system-related errors.

SyntaxError

IndentationError

Raised when there is an error in Python syntax.

Raised when indentation is not specified

properly.

SystemError

Raised when the interpreter finds an internal

problem, but when this error is encountered the

Python interpreter does not exit.

SystemExit

Raised when Python interpreter is quit by using

the sys.exit() function. If not handled in the

code, causes the interpreter to exit.

Raised when Python interpreter is quit by using

the sys.exit() function. If not handled in the

code, causes the interpreter to exit.

Raised when an operation or function is

attempted that is invalid for the specified data

type.

ValueError

Raised when the built-in function for a data

type has the valid type of arguments, but the

arguments have invalid values specified.

RuntimeError
Raised when a generated error does not fall into

any category.

NotImplementedError

Raised when an abstract method that needs to

be implemented in an inherited class is not

actually implemented.

Assertions in Python

An assertion is a sanity-check that you can turn on or turn off when you are done with your

testing of the program.

The easiest way to think of an assertion is to liken it to a raise-if statement (or to be more

accurate, a raise-if-not statement). An expression is tested, and if the result comes up false, an

exception is raised.

Assertions are carried out by the assert statement, the newest keyword to Python, introduced in

version 1.5.

Programmers often place assertions at the start of a function to check for valid input, and after a

function call to check for valid output.

The assert Statement

When it encounters an assert statement, Python evaluates the accompanying expression, which is

hopefully true. If the expression is false, Python raises an AssertionError exception.

The syntax for assert is −

assert Expression[, Arguments]

If the assertion fails, Python uses ArgumentExpression as the argument for the AssertionError.

AssertionError exceptions can be caught and handled like any other exception using the try-

except statement, but if not handled, they will terminate the program and produce a traceback.

Example

Here is a function that converts a temperature from degrees Kelvin to degrees Fahrenheit. Since

zero degrees Kelvin is as cold as it gets, the function bails out if it sees a negative temperature −

#!/usr/bin/python

def KelvinToFahrenheit(Temperature):

assert (Temperature >= 0),"Colder than absolute zero!"

return ((Temperature-273)*1.8)+32

print KelvinToFahrenheit(273)

print int(KelvinToFahrenheit(505.78))

print KelvinToFahrenheit(-5)

When the above code is executed, it produces the following result −

32.0

451

Traceback (most recent call last):

File "test.py", line 9, in

print KelvinToFahrenheit(-5)

File "test.py", line 4, in KelvinToFahrenheit

assert (Temperature >= 0),"Colder than absolute zero!"

AssertionError: Colder than absolute zero!

What is Exception?

An exception is an event, which occurs during the execution of a program that disrupts the

normal flow of the program's instructions. In general, when a Python script encounters a

situation that it cannot cope with, it raises an exception. An exception is a Python object that

represents an error.

When a Python script raises an exception, it must either handle the exception immediately

otherwise it terminates and quits.

Handling an exception

If you have some suspicious code that may raise an exception, you can defend your program by

placing the suspicious code in a try: block. After the try: block, include an except: statement,

followed by a block of code which handles the problem as elegantly as possible.

Syntax

Here is simple syntax of try....except...else blocks −

try:

 You do your operations here;

except ExceptionI:

 If there is ExceptionI, then execute this block.

except ExceptionII:

 If there is ExceptionII, then execute this block.

else:

 If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax −

 A single try statement can have multiple except statements. This is useful when the try

block contains statements that may throw different types of exceptions.

 You can also provide a generic except clause, which handles any exception.

 After the except clause(s), you can include an else-clause. The code in the else-block

executes if the code in the try: block does not raise an exception.

 The else-block is a good place for code that does not need the try: block's protection.

Example

This example opens a file, writes content in the, file and comes out gracefully because there is no

problem at all −

#!/usr/bin/python

try:

 fh = open("testfile", "w")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print "Error: can\'t find file or read data"

else:

 print "Written content in the file successfully"

 fh.close()

This produces the following result −

Written content in the file successfully

Example

This example tries to open a file where you do not have write permission, so it raises an

exception −

#!/usr/bin/python

try:

 fh = open("testfile", "r")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print "Error: can\'t find file or read data"

else:

 print "Written content in the file successfully"

This produces the following result −

Error: can't find file or read data

The except Clause with No Exceptions

You can also use the except statement with no exceptions defined as follows −

try:

 You do your operations here;

except:

 If there is any exception, then execute this block.

else:

 If there is no exception then execute this block.

This kind of a try-except statement catches all the exceptions that occur. Using this kind of try-

except statement is not considered a good programming practice though, because it catches all

exceptions but does not make the programmer identify the root cause of the problem that may

occur.

The except Clause with Multiple Exceptions

You can also use the same except statement to handle multiple exceptions as follows −

try:

 You do your operations here;

except(Exception1[, Exception2[,...ExceptionN]]]):

 If there is any exception from the given exception list,

 then execute this block.

else:

 If there is no exception then execute this block.

The try-finally Clause

You can use a finally: block along with a try: block. The finally block is a place to put any code

that must execute, whether the try-block raised an exception or not. The syntax of the try-finally

statement is this −

try:

 You do your operations here;

 Due to any exception, this may be skipped.

finally:

 This would always be executed.

Note that you can provide except clause(s), or a finally clause, but not both. You cannot use else

clause as well along with a finally clause.

Example

#!/usr/bin/python

try:

 fh = open("testfile", "w")

 fh.write("This is my test file for exception handling!!")

finally:

 print "Error: can\'t find file or read data"

If you do not have permission to open the file in writing mode, then this will produce the

following result:

Error: can't find file or read data

Same example can be written more cleanly as follows −

#!/usr/bin/python

try:

 fh = open("testfile", "w")

 try:

 fh.write("This is my test file for exception handling!!")

 finally:

 print "Going to close the file"

 fh.close()

except IOError:

 print "Error: can\'t find file or read data"

When an exception is thrown in the try block, the execution immediately passes to the finally

block. After all the statements in the finally block are executed, the exception is raised again and

is handled in the except statements if present in the next higher layer of the try-except statement.

Argument of an Exception

An exception can have an argument, which is a value that gives additional information about the

problem. The contents of the argument vary by exception. You capture an exception's argument

by supplying a variable in the except clause as follows −

try:

 You do your operations here;

except ExceptionType, Argument:

 You can print value of Argument here...

If you write the code to handle a single exception, you can have a variable follow the name of the

exception in the except statement. If you are trapping multiple exceptions, you can have a

variable follow the tuple of the exception.

This variable receives the value of the exception mostly containing the cause of the exception.

The variable can receive a single value or multiple values in the form of a tuple. This tuple

usually contains the error string, the error number, and an error location.

Example

Following is an example for a single exception −

#!/usr/bin/python

Define a function here.

def temp_convert(var):

 try:

 return int(var)

 except ValueError, Argument:

 print "The argument does not contain numbers\n", Argument

Call above function here.

temp_convert("xyz");

This produces the following result −

The argument does not contain numbers

invalid literal for int() with base 10: 'xyz'

Raising an Exceptions

You can raise exceptions in several ways by using the raise statement. The general syntax for the

raise statement is as follows.

Syntax

raise [Exception [, args [, traceback]]]

Here, Exception is the type of exception (for example, NameError) and argument is a value for

the exception argument. The argument is optional; if not supplied, the exception argument is

None.

The final argument, traceback, is also optional (and rarely used in practice), and if present, is the

traceback object used for the exception.

Example

An exception can be a string, a class or an object. Most of the exceptions that the Python core

raises are classes, with an argument that is an instance of the class. Defining new exceptions is

quite easy and can be done as follows −

def functionName(level):

 if level < 1:

 raise "Invalid level!", level

 # The code below to this would not be executed

 # if we raise the exception

Note: In order to catch an exception, an "except" clause must refer to the same exception thrown

either class object or simple string. For example, to capture above exception, we must write the

except clause as follows −

try:

 Business Logic here...

except "Invalid level!":

 Exception handling here...

else:

 Rest of the code here...

User-Defined Exceptions

Python also allows you to create your own exceptions by deriving classes from the standard

built-in exceptions.

Here is an example related to RuntimeError. Here, a class is created that is subclassed from

RuntimeError. This is useful when you need to display more specific information when an

exception is caught.

In the try block, the user-defined exception is raised and caught in the except block. The variable

e is used to create an instance of the class Networkerror.

class Networkerror(RuntimeError):

 def __init__(self, arg):

 self.args = arg

So once you defined above class, you can raise the exception as follows −

try:

 raise Networkerror("Bad hostname")

except Networkerror,e:

 print e.args

