
UNIT 1

Python is a general-purpose interpreted, interactive, object-oriented, and high-level programming

language. It was created by Guido van Rossum during 1985- 1990. Like Perl, Python source

code is also available under the GNU General Public License (GPL).

Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is

designed to be highly readable. It uses English keywords frequently where as other languages

use punctuation, and it has fewer syntactical constructions than other languages.

 Python is Interpreted: Python is processed at runtime by the interpreter. You do not

need to compile your program before executing it. This is similar to PERL and PHP.

 Python is Interactive: You can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

 Python is Object-Oriented: Python supports Object-Oriented style or technique of

programming that encapsulates code within objects.

 Python is a Beginner's Language: Python is a great language for the beginner-level

programmers and supports the development of a wide range of applications from simple

text processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties and early nineties at the

National Research Institute for Mathematics and Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,

SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under the GNU General

Public License (GPL).

Python is now maintained by a core development team at the institute, although Guido van

Rossum still holds a vital role in directing its progress.

Python Features

Python's features include:

 Easy-to-learn: Python has few keywords, simple structure, and a clearly defined syntax.

This allows the student to pick up the language quickly.

 Easy-to-read: Python code is more clearly defined and visible to the eyes.

 Easy-to-maintain: Python's source code is fairly easy-to-maintain.

 A broad standard library: Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, and Macintosh.

 Interactive Mode:Python has support for an interactive mode which allows interactive

testing and debugging of snippets of code.

 Portable: Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.

 Extendable: You can add low-level modules to the Python interpreter. These modules

enable programmers to add to or customize their tools to be more efficient.

 Databases: Python provides interfaces to all major commercial databases.

 GUI Programming: Python supports GUI applications that can be created and ported to

many system calls, libraries and windows systems, such as Windows MFC, Macintosh,

and the X Window system of Unix.

 Scalable: Python provides a better structure and support for large programs than shell

scripting.

Apart from the above-mentioned features, Python has a big list of good features, few are listed

below:

 IT supports functional and structured programming methods as well as OOP.

 It can be used as a scripting language or can be compiled to byte-code for building large

applications.

 It provides very high-level dynamic data types and supports dynamic type checking.

 IT supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Running Python

There are three different ways to start Python:

(1) Interactive Interpreter:

You can start Python from Unix, DOS, or any other system that provides you a command-line

interpreter or shell window.

Enter python the command line.

Start coding right away in the interactive interpreter.

$python # Unix/Linux

or

python% # Unix/Linux

or

C:>python # Windows/DOS

Here is the list of all the available command line options:

Option Description

-d provide debug output

-O generate optimized bytecode (resulting in .pyo files)

-S do not run import site to look for Python paths on startup

-v verbose output (detailed trace on import statements)

-X
disable class-based built-in exceptions (just use strings); obsolete starting with version

1.6

-c cmd run Python script sent in as cmd string

file run Python script from given file

(2) Script from the Command-line:

A Python script can be executed at command line by invoking the interpreter on your

application, as in the following:

$python script.py # Unix/Linux

or

python% script.py # Unix/Linux

or

C:>python script.py # Windows/DOS

Note: Be sure the file permission mode allows execution.

(3) Integrated Development Environment

You can run Python from a Graphical User Interface (GUI) environment as well, if you have a

GUI application on your system that supports Python.

 Unix: IDLE is the very first Unix IDE for Python.

 Windows: PythonWin is the first Windows interface for Python and is an IDE with a

GUI.

 Macintosh: The Macintosh version of Python along with the IDLE IDE is available from

the main website, downloadable as either MacBinary or BinHex'd files.

If you are not able to set up the environment properly, then you can take help from your system

admin. Make sure the Python environment is properly set up and working perfectly fine.

Note: All the examples given in subsequent chapters are executed with Python 2.4.3 version

available on CentOS flavor of Linux.

We already have set up Python Programming environment online, so that you can execute all the

available examples online at the same time when you are learning theory. Feel free to modify

any example and execute it online.

The Python language has many similarities to Perl, C, and Java. However, there are some

definite differences between the languages.

First Python Program

Let us execute programs in different modes of programming.

Interactive Mode Programming

Invoking the interpreter without passing a script file as a parameter brings up the following

prompt −

$ python

Python 2.4.3 (#1, Nov 11 2010, 13:34:43)

[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Type the following text at the Python prompt and press the Enter:

>>> print "Hello, Python!"

If you are running new version of Python, then you would need to use print statement with

parenthesis as in print ("Hello, Python!");. However in Python version 2.4.3, this produces the

following result:

Hello, Python!

Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the script and continues until

the script is finished. When the script is finished, the interpreter is no longer active.

Let us write a simple Python program in a script. Python files have extension .py. Type the

following source code in a test.py file:

print "Hello, Python!"

We assume that you have Python interpreter set in PATH variable. Now, try to run this program

as follows −

$ python test.py

This produces the following result:

Hello, Python!

Let us try another way to execute a Python script. Here is the modified test.py file −

#!/usr/bin/python

print "Hello, Python!"

We assume that you have Python interpreter available in /usr/bin directory. Now, try to run this

program as follows −

$ chmod +x test.py # This is to make file executable

$./test.py

This produces the following result −

Hello, Python!

Python Identifiers

A Python identifier is a name used to identify a variable, function, class, module or other object.

An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more

letters, underscores and digits (0 to 9).

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is a

case sensitive programming language. Thus, Manpower and manpower are two different

identifiers in Python.

Here are naming conventions for Python identifiers −

 Class names start with an uppercase letter. All other identifiers start with a lowercase

letter.

 Starting an identifier with a single leading underscore indicates that the identifier is

private.

 Starting an identifier with two leading underscores indicates a strongly private identifier.

 If the identifier also ends with two trailing underscores, the identifier is a language-

defined special name.

Reserved Words

The following list shows the Python keywords. These are reserved words and you cannot use

them as constant or variable or any other identifier names. All the Python keywords contain

lowercase letters only.

And exec Not

Assert finally or

Break for pass

Class from print

Continue global raise

def if return

del import try

elif in while

else is with

except lambda yield

Lines and Indentation

Python provides no braces to indicate blocks of code for class and function definitions or flow

control. Blocks of code are denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block must be

indented the same amount. For example −

if True:

 print "True"

else:

 print "False"

However, the following block generates an error −

if True:

 print "Answer"

 print "True"

else:

 print "Answer"

 print "False"

Thus, in Python all the continuous lines indented with same number of spaces would form a

block. The following example has various statement blocks −

Note: Do not try to understand the logic at this point of time. Just make sure you understood

various blocks even if they are without braces.

#!/usr/bin/python

import sys

try:

 # open file stream

 file = open(file_name, "w")

except IOError:

 print "There was an error writing to", file_name

 sys.exit()

print "Enter '", file_finish,

print "' When finished"

while file_text != file_finish:

 file_text = raw_input("Enter text: ")

 if file_text == file_finish:

 # close the file

 file.close

 break

 file.write(file_text)

 file.write("\n")

file.close()

file_name = raw_input("Enter filename: ")

if len(file_name) == 0:

 print "Next time please enter something"

 sys.exit()

try:

 file = open(file_name, "r")

except IOError:

 print "There was an error reading file"

 sys.exit()

file_text = file.read()

file.close()

print file_text

Multi-Line Statements

Statements in Python typically end with a new line. Python does, however, allow the use of the

line continuation character (\) to denote that the line should continue. For example −

total = item_one + \

 item_two + \

 item_three

Statements contained within the [], {}, or () brackets do not need to use the line continuation

character. For example −

days = ['Monday', 'Tuesday', 'Wednesday',

 'Thursday', 'Friday']

Quotation in Python

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals, as long

as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the following

are legal −

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

Comments in Python

A hash sign (#) that is not inside a string literal begins a comment. All characters after the # and

up to the end of the physical line are part of the comment and the Python interpreter ignores

them.

#!/usr/bin/python

First comment

print "Hello, Python!" # second comment

This produces the following result −

Hello, Python!

You can type a comment on the same line after a statement or expression −

name = "Madisetti" # This is again comment

You can comment multiple lines as follows −

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Using Blank Lines

A line containing only whitespace, possibly with a comment, is known as a blank line and

Python totally ignores it.

In an interactive interpreter session, you must enter an empty physical line to terminate a

multiline statement.

Waiting for the User

The following line of the program displays the prompt, the statement saying “Press the enter key

to exit”, and waits for the user to take action −

#!/usr/bin/python

raw_input("\n\nPress the enter key to exit.")

Here, "\n\n" is used to create two new lines before displaying the actual line. Once the user

presses the key, the program ends. This is a nice trick to keep a console window open until the

user is done with an application.

Multiple Statements on a Single Line

The semicolon (;) allows multiple statements on the single line given that neither statement

starts a new code block. Here is a sample snip using the semicolon −

import sys; x = 'foo'; sys.stdout.write(x + '\n')

Multiple Statement Groups as Suites

A group of individual statements, which make a single code block are called suites in Python.

Compound or complex statements, such as if, while, def, and class require a header line and a

suite.

Header lines begin the statement (with the keyword) and terminate with a colon (:) and are

followed by one or more lines which make up the suite. For example −

if expression :

 suite

elif expression :

 suite

else :

 suite

Command Line Arguments

Many programs can be run to provide you with some basic information about how they should

be run. Python enables you to do this with -h −

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...

Options and arguments (and corresponding environment variables):

-c cmd : program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

[etc.]

You can also program your script in such a way that it should accept various options. Command

Line Arguments is an advanced topic and should be studied a bit later once you have gone

through rest of the Python concepts.

http://www.tutorialspoint.com/python/python_command_line_arguments.htm
http://www.tutorialspoint.com/python/python_command_line_arguments.htm
http://www.tutorialspoint.com/python/python_command_line_arguments.htm

Python Variable Types

Variables are nothing but reserved memory locations to store values. This means that when you

create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can be

stored in the reserved memory. Therefore, by assigning different data types to variables, you can

store integers, decimals or characters in these variables.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space. The declaration

happens automatically when you assign a value to a variable. The equal sign (=) is used to assign

values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right

of the = operator is the value stored in the variable. For example −

#!/usr/bin/python

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

print counter

print miles

print name

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and name variables,

respectively. This produces the following result −

100

1000.0

John

Multiple Assignment

Python allows you to assign a single value to several variables simultaneously. For example −

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are assigned to the

same memory location. You can also assign multiple objects to multiple variables. For example

−

 a, b, c = 1, 2, "john"

Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively, and

one string object with the value "john" is assigned to the variable c.

Standard Data Types

The data stored in memory can be of many types. For example, a person's age is stored as a

numeric value and his or her address is stored as alphanumeric characters. Python has various

standard data types that are used to define the operations possible on them and the storage

method for each of them.

Python has five standard data types −

 Numbers

 String

 List

 Tuple

 Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when you assign a value to

them. For example −

var1 = 1

var2 = 10

You can also delete the reference to a number object by using the del statement. The syntax of

the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example −

del var

del var_a, var_b

Python supports four different numerical types −

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

Examples

Here are some examples of numbers −

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

 Python allows you to use a lowercase L with long, but it is recommended that you use

only an uppercase L to avoid confusion with the number 1. Python displays long integers

with an uppercase L.

 A complex number consists of an ordered pair of real floating-point numbers denoted by

x + yj, where x and y are the real numbers and j is the imaginary unit.

 Data Type Conversion
 Sometimes, you may need to perform conversions between the built-in types. To convert between

types, you simply use the type name as a function.

 There are several built-in functions to perform conversion from one data type to another. These

functions return a new object representing the converted value.

Function Description

int(x [,base]) Converts x to an integer. base specifies the base if x is a string.

long(x [,base]) Converts x to a long integer. base specifies the base if x is a string.

float(x) Converts x to a floating-point number.

complex(real [,imag]) Creates a complex number.

str(x) Converts object x to a string representation.

repr(x) Converts object x to an expression string.

eval(str) Evaluates a string and returns an object.

tuple(s) Converts s to a tuple.

list(s) Converts s to a list.

set(s) Converts s to a set.

dict(d) Creates a dictionary. d must be a sequence of (key,value) tuples.

frozenset(s) Converts s to a frozen set.

chr(x) Converts an integer to a character.

unichr(x) Converts an integer to a Unicode character.

ord(x) Converts a single character to its integer value.

hex(x) Converts an integer to a hexadecimal string.

oct(x) Converts an integer to an octal string.

Python Basic Operators

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

Types of Operator

Python language supports the following types of operators.

 Arithmetic Operators

 Comparison (Relational) Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

Let us have a look on all operators one by one.

Python Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

+ Addition
Adds values on either side of the

operator.
a + b = 30

- Subtraction Subtracts right hand operand from left a – b = -10

http://www.tutorialspoint.com/python/arithmetic_operators_example.htm

hand operand.

*

Multiplication

Multiplies values on either side of the

operator
a * b = 200

/ Division
Divides left hand operand by right hand

operand
b / a = 2

% Modulus
Divides left hand operand by right hand

operand and returns remainder
b % a = 0

** Exponent
Performs exponential (power)

calculation on operators
a**b =10 to the power 20

//

Floor Division - The division of

operands where the result is the quotient

in which the digits after the decimal

point are removed.

9//2 = 4 and 9.0//2.0 = 4.0

Python Comparison Operators

These operators compare the values on either sides of them and decide the relation among them.

They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

==
If the values of two operands are equal,

then the condition becomes true.
(a == b) is not true.

!=
If values of two operands are not equal,

then condition becomes true.

<>
If values of two operands are not equal,

then condition becomes true.

(a <> b) is true. This is similar to !=

operator.

>

If the value of left operand is greater than

the value of right operand, then condition

becomes true.

(a > b) is not true.

<

If the value of left operand is less than the

value of right operand, then condition

becomes true.

(a < b) is true.

>=

If the value of left operand is greater than

or equal to the value of right operand, then

condition becomes true.

(a >= b) is not true.

<=

If the value of left operand is less than or

equal to the value of right operand, then

condition becomes true.

(a <= b) is true.

http://www.tutorialspoint.com/python/comparison_operators_example.htm

Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

=
Assigns values from right side operands to

left side operand
c = a + b assigns value of a + b into c

+= Add

AND

It adds right operand to the left operand

and assign the result to left operand
c += a is equivalent to c = c + a

-=

Subtract

AND

It subtracts right operand from the left

operand and assign the result to left

operand

c -= a is equivalent to c = c - a

*=

Multiply

AND

It multiplies right operand with the left

operand and assign the result to left

operand

c *= a is equivalent to c = c * a

/= Divide

AND

It divides left operand with the right

operand and assign the result to left

operand

c /= a is equivalent to c = c / ac /= a is

equivalent to c = c / a

%=

Modulus

AND

It takes modulus using two operands and

assign the result to left operand
c %= a is equivalent to c = c % a

**=

Exponent

AND

Performs exponential (power) calculation

on operators and assign value to the left

operand

c **= a is equivalent to c = c ** a

//= Floor

Division

It performs floor division on operators and

assign value to the left operand
c //= a is equivalent to c = c // a

Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b = 13;

Now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

http://www.tutorialspoint.com/python/assignment_operators_example.htm

a^b = 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python language

[Show Example]

Operator Description Example

& Binary

AND

Operator copies a bit to the result if it

exists in both operands
(a & b) (means 0000 1100)

| Binary OR
It copies a bit if it exists in either

operand.
(a | b) = 61 (means 0011 1101)

^ Binary

XOR

It copies the bit if it is set in one operand

but not both.
(a ^ b) = 49 (means 0011 0001)

~ Binary

Ones

Complement

It is unary and has the effect of 'flipping'

bits.

(~a) = -61 (means 1100 0011 in 2's

complement form due to a signed binary

number.

<< Binary

Left Shift

The left operands value is moved left by

the number of bits specified by the right

operand.

a << = 240 (means 1111 0000)

>> Binary

Right Shift

The left operands value is moved right

by the number of bits specified by the

right operand.

a >> = 15 (means 0000 1111)

Python Logical Operators

There are following logical operators supported by Python language. Assume variable a holds 10

and variable b holds 20 then

[Show Example]

Used to reverse the logical state of its operand.

Python Membership Operators

Python’s membership operators test for membership in a sequence, such as strings, lists, or

tuples. There are two membership operators as explained below

[Show Example]

Operator Description Example

in Evaluates to true if it finds a variable in x in y, here in results in a 1 if x is a

http://www.tutorialspoint.com/python/bitwise_operators_example.htm
http://www.tutorialspoint.com/python/logical_operators_example.htm
http://www.tutorialspoint.com/python/membership_operators_example.htm

the specified sequence and false otherwise. member of sequence y.

not in

Evaluates to true if it does not finds a

variable in the specified sequence and

false otherwise.

x not in y, here not in results in a 1 if x is

not a member of sequence y.

Python Identity Operators

Identity operators compare the memory locations of two objects. There are two Identity operators

explained below:

[Show Example]

Operator Description Example

is

Evaluates to true if the variables on either

side of the operator point to the same

object and false otherwise.

x is y, here is results in 1 if id(x) equals

id(y).

is not

Evaluates to false if the variables on either

side of the operator point to the same

object and true otherwise.

x is not y, here is not results in 1 if id(x) is

not equal to id(y).

Python Operators Precedence

The following table lists all operators from highest precedence to lowest.

[Show Example]

Operator Description

** Exponentiation (raise to the power)

~ + -
Ccomplement, unary plus and minus (method names for the last two are

+@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= += *=

**=
Assignment operators

is is not Identity operators

in not in Membership operators

http://www.tutorialspoint.com/python/identity_operators_example.htm
http://www.tutorialspoint.com/python/operators_precedence_example.htm

not or and Logical operators

Python Decision Making

Decision making is anticipation of conditions occurring while execution of the program and

specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or FALSE as outcome.

You need to determine which action to take and which statements to execute if outcome is TRUE

or FALSE otherwise.

Following is the general form of a typical decision making structure found in most of the

programming languages −

Python programming language assumes any non-zero and non-null values as TRUE, and if it is

either zero or null, then it is assumed as FALSE value.

Python programming language provides following types of decision making statements. Click

the following links to check their detail.

Statement Description

if statements

An if statement consists of a boolean expression followed by

one or more statements.

if...else statements

An if statement can be followed by an optional else

statement, which executes when the boolean expression is

http://www.tutorialspoint.com/python/python_if_statement.htm
http://www.tutorialspoint.com/python/python_if_else.htm

FALSE.

nested if statements

You can use one if or else if statement inside another if or else

if statement(s).

Let us go through each decision making briefly −

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the header

statement.

Here is an example of a one-line if clause −

#!/usr/bin/python

var = 100

if (var == 100) : print "Value of expression is 100"

print "Good bye!"

When the above code is executed, it produces the following result −

Value of expression is 100

Good bye!

Python Loops

In general, statements are executed sequentially: The first statement in a function is executed

first, followed by the second, and so on. There may be a situation when you need to execute a

block of code several number of times.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times. The

following diagram illustrates a loop statement −

http://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

Python programming language provides following types of loops to handle looping

requirements.

Loop Type Description

while loop

Repeats a statement or group of statements while a given condition

is TRUE. It tests the condition before executing the loop body.

for loop

Executes a sequence of statements multiple times and abbreviates

the code that manages the loop variable.

nested loops

You can use one or more loop inside any another while, for or

do..while loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements. Click the following links to check their detail.

Control Statement Description

break statement

Terminates the loop statement and transfers execution to the

statement immediately following the loop.

continue statement

Causes the loop to skip the remainder of its body and immediately

retest its condition prior to reiterating.

http://www.tutorialspoint.com/python/python_while_loop.htm
http://www.tutorialspoint.com/python/python_for_loop.htm
http://www.tutorialspoint.com/python/python_nested_loops.htm
http://www.tutorialspoint.com/python/python_break_statement.htm
http://www.tutorialspoint.com/python/python_continue_statement.htm

pass statement

The pass statement in Python is used when a statement is required

syntactically but you do not want any command or code to execute.

Python Numbers

Number data types store numeric values. They are immutable data types, means that changing

the value of a number data type results in a newly allocated object.

Number objects are created when you assign a value to them. For example −

var1 = 1

var2 = 10

You can also delete the reference to a number object by using the del statement. The syntax of

the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example:

del var

del var_a, var_b

Python supports four different numerical types −

 int (signed integers): They are often called just integers or ints, are positive or negative

whole numbers with no decimal point.

 long (long integers): Also called longs, they are integers of unlimited size, written like

integers and followed by an uppercase or lowercase L.

 float (floating point real values) : Also called floats, they represent real numbers and are

written with a decimal point dividing the integer and fractional parts. Floats may also be

in scientific notation, with E or e indicating the power of 10 (2.5e2 = 2.5 x 10
2
 = 250).

 complex (complex numbers) : are of the form a + bJ, where a and b are floats and J (or

j) represents the square root of -1 (which is an imaginary number). The real part of the

number is a, and the imaginary part is b. Complex numbers are not used much in Python

programming.

Examples

Here are some examples of numbers

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

http://www.tutorialspoint.com/python/python_pass_statement.htm

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEL 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

 Python allows you to use a lowercase L with long, but it is recommended that you use

only an uppercase L to avoid confusion with the number 1. Python displays long integers

with an uppercase L.

 A complex number consists of an ordered pair of real floating point numbers denoted by

a + bj, where a is the real part and b is the imaginary part of the complex number.

Number Type Conversion

Python converts numbers internally in an expression containing mixed types to a common type

for evaluation. But sometimes, you need to coerce a number explicitly from one type to another

to satisfy the requirements of an operator or function parameter.

 Type int(x) to convert x to a plain integer.

 Type long(x) to convert x to a long integer.

 Type float(x) to convert x to a floating-point number.

 Type complex(x) to convert x to a complex number with real part x and imaginary part

zero.

 Type complex(x, y) to convert x and y to a complex number with real part x and

imaginary part y. x and y are numeric expressions

Mathematical Functions

Python includes following functions that perform mathematical calculations.

Function Returns (description)

abs(x) The absolute value of x: the (positive) distance between x and zero.

ceil(x) The ceiling of x: the smallest integer not less than x

cmp(x, y) -1 if x < y, 0 if x == y, or 1 if x > y

exp(x) The exponential of x: e
x

fabs(x) The absolute value of x.

floor(x) The floor of x: the largest integer not greater than x

log(x) The natural logarithm of x, for x> 0

log10(x) The base-10 logarithm of x for x> 0 .

max(x1, x2,...) The largest of its arguments: the value closest to positive infinity

min(x1, x2,...) The smallest of its arguments: the value closest to negative infinity

modf(x) The fractional and integer parts of x in a two-item tuple. Both parts have

http://www.tutorialspoint.com/python/number_abs.htm
http://www.tutorialspoint.com/python/number_ceil.htm
http://www.tutorialspoint.com/python/number_cmp.htm
http://www.tutorialspoint.com/python/number_exp.htm
http://www.tutorialspoint.com/python/number_fabs.htm
http://www.tutorialspoint.com/python/number_floor.htm
http://www.tutorialspoint.com/python/number_log.htm
http://www.tutorialspoint.com/python/number_log10.htm
http://www.tutorialspoint.com/python/number_max.htm
http://www.tutorialspoint.com/python/number_min.htm
http://www.tutorialspoint.com/python/number_modf.htm

the same sign as x. The integer part is returned as a float.

pow(x, y) The value of x**y.

round(x [,n])

x rounded to n digits from the decimal point. Python rounds away from

zero as a tie-breaker: round(0.5) is 1.0 and round(-0.5) is -1.0.

sqrt(x) The square root of x for x > 0

Python Functions

A function is a block of organized, reusable code that is used to perform a single, related action.

Functions provide better modularity for your application and a high degree of code reusing.

As you already know, Python gives you many built-in functions like print(), etc. but you can also

create your own functions. These functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to define a

function in Python.

 Function blocks begin with the keyword def followed by the function name and

parentheses (()).

 Any input parameters or arguments should be placed within these parentheses. You can

also define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the documentation string

of the function or docstring.

 The code block within every function starts with a colon (:) and is indented.

 The statement return [expression] exits a function, optionally passing back an expression

to the caller. A return statement with no arguments is the same as return None.

Syntax

def functionname(parameters):

 "function_docstring"

 function_suite

 return [expression]

By default, parameters have a positional behavior and you need to inform them in the same order

that they were defined.

Example

The following function takes a string as input parameter and prints it on standard screen.

http://www.tutorialspoint.com/python/number_pow.htm
http://www.tutorialspoint.com/python/number_round.htm
http://www.tutorialspoint.com/python/number_sqrt.htm

def printme(str):

 "This prints a passed string into this function"

 print str

 return

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included in the

function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from another

function or directly from the Python prompt. Following is the example to call printme() function

−

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme("I'm first call to user defined function!")

printme("Again second call to the same function")

When the above code is executed, it produces the following result −

I'm first call to user defined function!

Again second call to the same function

Pass by reference vs value

All parameters (arguments) in the Python language are passed by reference. It means if you

change what a parameter refers to within a function, the change also reflects back in the calling

function. For example −

#!/usr/bin/python

Function definition is here

def changeme(mylist):

 "This changes a passed list into this function"

 mylist.append([1,2,3,4]);

 print "Values inside the function: ", mylist

 return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

Here, we are maintaining reference of the passed object and appending values in the same object.

So, this would produce the following result −

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]

Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

There is one more example where argument is being passed by reference and the reference is

being overwritten inside the called function.

#!/usr/bin/python

Function definition is here

def changeme(mylist):

 "This changes a passed list into this function"

 mylist = [1,2,3,4]; # This would assig new reference in mylist

 print "Values inside the function: ", mylist

 return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

The parameter mylist is local to the function changeme. Changing mylist within the function

does not affect mylist. The function accomplishes nothing and finally this would produce the

following result:

Values inside the function: [1, 2, 3, 4]

Values outside the function: [10, 20, 30]

Function Arguments

You can call a function by using the following types of formal arguments:

 Required arguments

 Keyword arguments

 Default arguments

 Variable-length arguments

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the

number of arguments in the function call should match exactly with the function definition.

To call the function printme(), you definitely need to pass one argument, otherwise it gives a

syntax error as follows −

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme()

When the above code is executed, it produces the following result:

Traceback (most recent call last):

 File "test.py", line 11, in <module>

 printme();

TypeError: printme() takes exactly 1 argument (0 given)

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter is

able to use the keywords provided to match the values with parameters. You can also make

keyword calls to the printme() function in the following ways −

#!/usr/bin/python

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme(str = "My string")

When the above code is executed, it produces the following result −

My string

The following example gives more clear picture. Note that the order of parameters does not

matter.

#!/usr/bin/python

Function definition is here

def printinfo(name, age):

 "This prints a passed info into this function"

 print "Name: ", name

 print "Age ", age

 return;

Now you can call printinfo function

printinfo(age=50, name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the

function call for that argument. The following example gives an idea on default arguments, it

prints default age if it is not passed −

#!/usr/bin/python

Function definition is here

def printinfo(name, age = 35):

 "This prints a passed info into this function"

 print "Name: ", name

 print "Age ", age

 return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Name: miki

Age 35

Variable-length arguments

You may need to process a function for more arguments than you specified while defining the

function. These arguments are called variable-length arguments and are not named in the

function definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

 "function_docstring"

 function_suite

 return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword

variable arguments. This tuple remains empty if no additional arguments are specified during the

function call. Following is a simple example −

#!/usr/bin/python

Function definition is here

def printinfo(arg1, *vartuple):

 "This prints a variable passed arguments"

 print "Output is: "

 print arg1

 for var in vartuple:

 print var

 return;

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

When the above code is executed, it produces the following result −

Output is:

10

Output is:

70

60

50

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner by

using the def keyword. You can use the lambda keyword to create small anonymous functions.

 Lambda forms can take any number of arguments but return just one value in the form of

an expression. They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression

 Lambda functions have their own local namespace and cannot access variables other than

those in their parameter list and those in the global namespace.

 Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function stack

allocation during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows −

lambda [arg1 [,arg2,.....argn]]:expression

Following is the example to show how lambda form of function works −

#!/usr/bin/python

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function

print "Value of total : ", sum(10, 20)

print "Value of total : ", sum(20, 20)

When the above code is executed, it produces the following result −

Value of total : 30

Value of total : 40

The return Statement

The statement return [expression] exits a function, optionally passing back an expression to the

caller. A return statement with no arguments is the same as return None.

All the above examples are not returning any value. You can return a value from a function as

follows −

#!/usr/bin/python

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2

 print "Inside the function : ", total

 return total;

Now you can call sum function

total = sum(10, 20);

print "Outside the function : ", total

When the above code is executed, it produces the following result −

Inside the function : 30

Outside the function : 30

Scope of Variables

All variables in a program may not be accessible at all locations in that program. This depends

on where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a particular

identifier. There are two basic scopes of variables in Python −

 Global variables

 Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined outside

have a global scope.

This means that local variables can be accessed only inside the function in which they are

declared, whereas global variables can be accessed throughout the program body by all

functions. When you call a function, the variables declared inside it are brought into scope.

Following is a simple example −

#!/usr/bin/python

total = 0; # This is global variable.

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2; # Here total is local variable.

 print "Inside the function local total : ", total

 return total;

Now you can call sum function

sum(10, 20);

print "Outside the function global total : ", total

When the above code is executed, it produces the following result −

Inside the function local total : 30

Outside the function global total : 0

