

UNIT-II

1

Fundamentals of Boolean Algebra

• Basic Postulates

• Postulate 1 (Definition): A Boolean algebra is a closed algebraic system

containing a set K of two or more elements and the two operators  and +.
• Postulate 2 (Existence of 1 and 0 element):

•

(a) a + 0 = a (identity for +), (b) a 1 = a (identity for )

Postulate 3 (Commutativity):

(b) a b = b a

•

(a) a + b = b + a,

Postulate 4 (Associativity):

(b) a (bc) = (ab) c

•

(a) a + (b + c) = (a + b) + c

Postulate 5 (Distributivity):

 (a) a + (bc) = (a + b) (a + c) (b) a (b + c) = ab + ac

• Postulate 6 (Existence of complement):

(a) A 

 1 (b)

 A

• Normally is omitted. A 

 0

A

2

Fundamentals of Boolean Algebra

• Fundamental Theorems of Boolean Algebra

• Theorem 1 (Idempotency):

(a) a + a = a (b) aa = a

• Theorem 2 (Null element):

(a) a + 1 = 1 (b) a0 = 0

• Theorem 3 (Involution)

A  A

• Properties of 0 and 1 elements (Table 2.1):

OR AND Complement

a + 0 = 0 a0 = 0 0' = 1

a + 1 = 1 a1 = a 1' = 0

3

Fundamentals of Boolean Algebra (3)

• Theorem 4 (Absorption)

(a) a + ab = a (b) a(a + b) = a

• Examples:
– (X + Y) + (X + Y)Z = X + Y
– AB'(AB' + B'C) = AB'

• Theorem 5
(a) a + a'b = a + b (b) a(a' + b) = ab

• Examples:
– B + AB'C'D = B + AC'D
– (X + Y)((X + Y)' + Z) = (X + Y)Z

4

Fundamentals of Boolean Algebra (4)

• Theorem 6

(a) ab + ab' = a (b) (a + b)(a + b') = a

• Examples:
– ABC + AB'C = AC
– (W' + X' + Y' + Z')(W' + X' + Y' + Z)(W' + X' + Y + Z')(W'

+ X' + Y + Z)
= (W' + X' + Y')(W' + X' + Y + Z')(W' + X' + Y + Z)

= (W' + X' + Y')(W' + X' + Y)
= (W' + X')

5

Fundamentals of Boolean Algebra (5)

• Theorem 7

(a) ab + ab'c = ab + ac (b) (a + b)(a + b'

+ c) = (a + b)(a + c)

• Examples:

– wy' + wx'y + wxyz + wxz' = wy' + wx'y + wxy + wxz
= wy' + wy + wxz'
= w + wxz'
= w

– (x'y' + z)(w + x'y' + z') = (x'y' + z)(w + x'y')

6

Fundamentals of Boolean Algebra (6)

• Theorem 8 (DeMorgan's Theorem)

(a) (a + b)' = a'b' (b) (ab)' = a' + b'

• Generalized DeMorgan's Theorem

(a) (a + b + … z)' = a'b' … z' (b) (ab … z)' = a' + b' + … z'

• Examples:
– (a + bc)' = (a + (bc))'

= a'(bc)'
= a'(b' + c')

= a'b' + a'c'

Note: (a + bc)' a'b' + c'

7

Logic Gates

• Electrical Signals and Logic Values

Electric Signal Logic Value

 Positive Logic Negative Logic

High Voltage (H) 1 0

Low Voltage (L) 0 1

– A signal that is set to logic 1 is said to be
asserted, active, or true.

– An active-high signal is asserted when it is
high (positive logic).

– An active-low signal is asserted when it is
low (negative logic).

8

AND

– Logic notation AB = C

(Sometimes AB = C)

A B C

0 0 0

0 1 0

1 0 0

1 1 1

9

OR

– Logic notation A + B = C

A B C

0 0 0

0 1 1

1 0 1

1 1 1

10

Inversion (NOT)

A Q

0 1

Logic: Q  A

1 0

11

Exclusive OR (XOR)

Either A or B, but not both

This is sometimes called the inequality
detector, because the result will be 0
when the inputs are the same and 1
when they are different.

The truth table is the same as for
S on Binary Addition. S = A  B

A B S

0 0 0

1 0 1

0 1 1

1 1 0

12

UNIVERSAL GATES

13

NAND (NOT AND)

Q  A  B

A B Q

0 0 1

0 1 1

1 0 1

1 1 0

14

Basic Functional Components

• AND, OR, and NOT gates constructed
exclusively from NAND gates

A
AB

F(A, B) = AB= AB A F(A, A) = AA = A

B

 AND gate NOT gate

A A
F(A, B) = A + B = A + B

B FNAND(A, A)  A  A  A  FNOT (A)
B

FNAND(A, B)  A B  A B  FAND(A, B)
OR gate

FNAND(A , B)  A B  A  B  FOR (A, B)

Hence, NAND gate may be used to implement all three elementary operators.

15

NOR (NOT OR)

Q  A  B

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

16

Basic Functional Components

• AND, OR, and NOT gates constructed exclusively from NOR gates.

A A + B
F(A, A) =A + A = A

B
F(A, B) =A + B A

 OR gate NOT gate

A A

 F(A, B) =AB= AB

B
FNOR(A, A)  A  A  A  FNOT (A)

B

 AND gate FNOR(A, B)  A  B  A  B  FOR (A, B)

FNOR(A , B)  A  B  A B  FAND(A, B)

Hence, NOR gate may be used to implement all three elementary operators.

17

Summary

Summary for all 2-input gates

Inputs Output of each gate

A B AND NAND OR NOR XOR XNOR

0 0 0 1 0 1 0 1

0 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 0 1 0 0 1

18

MINIMIZATON OF LOGIC EXPRESSION

• Goal -- minimize the cost of realizing a switching function
• Cost measures and other considerations

– Number of gates
– Number of levels
– Gate fan in and/or fan out
– Interconnection complexity
– Preventing hazards

• Two-level realizations
– Minimize the number of gates (terms in switching function)
– Minimize the fan in (literals in switching function)

• Commonly used techniques
– Boolean algebra postulates and theorems
– Karnaugh maps

19

Simplification Using Boolean Algebra

• A simplified Boolean expression uses the
fewest gates possible to implement a
given expression.

A

AB+A(B+C)+B(B+C)

B

C

20

Simplification Using Boolean Algebra

• AB+A(B+C)+B(B+C)
– (distributive law)

• AB+AB+AC+BB+BC

– (BB=B)

• AB+AB+AC+B+BC

– (AB+AB=AB)

• AB+AC+B+BC

– (B+BC=B)

• AB+AC+B

– (AB+B=B)

• B+AC

A

B

C AB+A(B+C)+B(B+C)

B B+AC

A

C

21

Simplification Using Boolean Algebra

• Try these:

[AB (C  BD)  A B]C

A BC  AB C  A B C  AB C 

ABC AB  AC  A B C

8
22

Standard Forms of Boolean Expressions

• All Boolean expressions, regardless of
their form, can be converted into either of
two standard forms:
– The sum-of-products (SOP) form
– The product-of-sums (POS) form

• Standardization makes the evaluation,

simplification, and implementation of Boolean
expressions much more systematic and easier.

23

The Sum-of-Products (SOP) Form

• An SOP expression
 when two or more
product terms are
summed by Boolean
addition.

– Examples:

AB  ABC

ABC  CDE  B CD

A B  A BC  AC

– Also:

A  A BC  BCD

 In an SOP form, a

single overbar cannot

extend over more than

one variable; however,

more than one variable

in a term can have an

overbar: 

example:A B Cis OK!

BUTNOT:ABC

24

Converting Product Terms to Standard SOP

• Step 1: Multiply each nonstandard product term by
a term made up of the sum of a missing variable and
its complement. This results in two product terms.
– As you know, you can multiply anything by 1

without changing its value.

• Step 2: Repeat step 1 until all resulting product term

contains all variables in the domain in either
complemented or uncomplemented form. In
converting a product term to standard form, the
number of product terms is doubled for each missing
variable.

25

Converting Product Terms to Standard
SOP (example)

• Convert the following Boolean expression
into standard SOP form:

ABC  AB  ABC D

AB C  AB C (D  D)  AB CD  AB CD

A B  A B (C  C)  A B C  A B C

A B C (D  D)  A B C (D  D)  A B CD  A B CD  A B C D  A B C D

AB C  A B  ABC D  AB CD  AB CD  A B CD  A B CD  A B C D  A B C D  ABC D

8
26

The Product-of-Sums (POS) Form

• When two or more In a POS form, a single

sum terms are overbar cannot extend

multiplied, the result over more than one

expression is a product- variable; however, more

of-sums (POS): than one variable in a

– Examples: term can have an

(

  B)(A 

 C)

overbar:

 A B

 



)(C 

 E)(

 C  D) example:





is OK!

(A B C D B A B C

(A  B)(A 

 C)(

 C)

B A

BUTNOT:

–

A  B  C

Also:

 D)

A(A  B  C)(B  C

 27

Converting a Sum Term to Standard POS

• Step 1: Add to each nonstandard product
term a term made up of the product of
the missing variable and its complement.
This results in two sum terms.
– As you know, you can add 0 to anything

without changing its value.
• Step 2: Apply rule  A+BC=(A+B)(A+C).

• Step 3: Repeat step 1 until all resulting

sum terms contain all variable in the
domain in either complemented or
uncomplemented form.

28

Converting a Sum Term to Standard
POS (example)

• Convert the following Boolean expression
into standard POS form:

(A  B  C)(B  C  D)(A  B  C  D)

A  B  C  A  B  C  DD  (A  B  C  D)(A  B  C  D)

B  C  D  B  C  D  AA  (A  B  C  D)(A  B  C  D)

(A  B  C)(B  C  D)(A  B  C  D) 

(A  B  C  D)(A  B  C  D)(A  B  C  D)(A  B  C  D)(A  B  C  D)

29

Boolean Expressions & Truth Tables

• All standard Boolean expression can be easily
converted into truth table format using
binary values for each term in the expression.

• Also, standard SOP or POS expression can

be determined from the truth table.

30

Converting SOP Expressions to Truth
Table Format

• Recall the fact:
– An SOP expression is equal to 1 only if at least one of the

product term is equal to 1.
• Constructing a truth table:

– Step 1: List all possible combinations of binary values
of the variables in the expression.

– Step 2: Convert the SOP expression to standard form if it
is not already.

– Step 3: Place a 1 in the output column (X) for each
binary value that makes the standard SOP expression a 1
and place 0 for all the remaining binary values.

31

Converting SOP Expressions to Truth
Table Format (example)

• Develop a truth table
for the standard SOP
expression

ABC  ABC  ABC

Inputs Output

 A B C X

 0 0 0 0

 0 0 1 1

 0 1 0 0

 0 1 1 0

 1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Product

T erm

A B C

AB C

ABC

32

Converting POS Expressions to Truth
Table Format

• Recall the fact:
– A POS expression is equal to 0 only if at least one of

the product term is equal to 0.
• Constructing a truth table:

– Step 1: List all possible combinations of binary values
of the variables in the expression.

– Step 2: Convert the POS expression to standard form if it
is not already.

– Step 3: Place a 0 in the output column (X) for each
binary value that makes the standard POS expression a 0
and place 1 for all the remaining binary values.

33

Converting POS Expressions to Truth
Table Format (example)

• Develop a truth table
for the standard SOP
expression

(A  B  C)(A  B  C)(A  B 

C) (A  B  C)(A  B  C)

 I nputs O utput Product

A B

C

X

Term

0 0 0 0 (A  B  C)

0 0 1 1

(A 

 C)

0 1 0 0 B

(A 



)

0 1 1 0 B C

1 0 0 1

(

 B 

)

1 0 1 0 A C

(



 C)

1 1 0 0 A B

1 1 1 1

34

Determining Standard Expression from
a Truth Table

• To determine the standard SOP
expression represented by a truth table.

• Instructions:
– Step 1: List the binary values of the input variables

for which the output is 1.
– Step 2: Convert each binary value to the

corresponding product term by replacing:
• each 1 with the corresponding variable, and
• each 0 with the corresponding variable complement.

• Example: 1010  AB CD

35

Determining Standard Expression from
a Truth Table

• To determine the standard POS
expression represented by a truth table.

• Instructions:
– Step 1: List the binary values of the input variables

for which the output is 0.
– Step 2: Convert each binary value to the

corresponding product term by replacing:
• each 1 with the corresponding variable complement, and
• each 0 with the corresponding variable.

• Example: 1001  A  B  C  D

36

The Karnaugh Map

• Feel a little difficult using Boolean algebra
laws, rules, and theorems to simplify logic?

• A K-map provides a systematic method for

simplifying Boolean expressions and, if
properly used, will produce the simplest
SOP or POS expression possible, known as
the minimum expression.

37

What is K-Map

• It s si ilar to truth ta le; i stead of ei g orga ized

(i/p and o/p) into columns and rows, the K-map is
an array of cells in which each cell represents a
binary value of the input variables.

• The cells are arranged in a way so that
simplification of a given expression is simply a
matter of properly grouping the cells.

• K-maps can be used for expressions with 2, 3, 4,

and 5 variables.

38

The 3 Variable K-Map

• There are 8 cells as shown:

C

0 1

AB

00 A B C A B C

01 A BC A BC

11
 ABC ABC

10 AB C AB C

Or

A 00

 01 11 10

0

A B C A BC A BC

 A B C

1

AB C

AB C

ABC

 ABC

 39

The 4-Variable K-Map

CD

AB

00

01

11

10

00 01 11 10

A B C D A B C D A B CDA B CD

A BC D A BC D A BCD A BCD

ABCD

ABC D ABC D ABCD

AB C D AB C D AB CD AB CD

40

K-Map SOP Minimization

• The K-Map is used for simplifying Boolean
expressions to their minimal form.

• A minimized SOP expression contains the

fewest possible terms with fewest
possible variables per term.

• Generally, a minimum SOP expression can

be implemented with fewer logic gates than
a standard expression.

41

Karnaugh Maps (K-maps)

• If mi is a minterm of f, then place a 1 in cell i
of the K-map.

• If Mi is a maxterm of f, then place a 0 in cell i.

• If di is a do t are of f, then place a d or x in
cell i.

42

Examples

• Two variable K-map
f(A,B)=m(0,1,3)=A`B`+A`B+AB

 B
 0

 1

A 0 1

0

1 1

43

Grouping the 1s (rules)

1. A group must contain either 1,2,4,8,or 16
cells (depending on number of variables in the
expression)

2. Each cell in a group must be adjacent to one or
more cells in that same group, but all cells in the
group do not have to be adjacent to each other.

3. Always include the largest possible number of 1s
in a group in accordance with rule 1.

4. Each 1 on the map must be included in at least
one group. The 1s already in a group can be
included in another group as long as the
overlapping groups include noncommon 1s.

44

Determining the Minimum SOP Expression

from the Map

2. Determine the minimum product term for
each group.
• For a 3-variable map:

1. A 1-cell group yields a 3-variable product term
2. A 2-cell group yields a 2-variable product term
3. A 4-cell group yields a 1-variable product term
4. An 8-cell group yields a value of 1 for the expression.

• For a 4-variable map:
1. A 1-cell group yields a 4-variable product term
2. A 2-cell group yields a 3-variable product term
3. A 4-cell group yields a 2-variable product term
4. An 8-cell group yields a a 1-variable product term
5. A 16-cell group yields a value of 1 for the expression.

45

Determining the Minimum SOP Expression

from the Map (example)

CD

00 01 11 10
B  A C  AC D

AB

00

1 1

 A C

01 1 1 1 1
B

11 1 1 1 1

AC D

10

1

46

Three-Variable K-Maps

f  (0,4)  B C f  (4,5)  A B f  (0,1,4,5)  B f  (0,1,2,3)  A

BC
00 01 11 10

BC
00 01 11 10

BC BC
00 01 11 10

A A A 00 01 11 10 A

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0

f  (0,4)  A C f  (4,6)  A C f  (0,2)  A C f  (0,2,4,6)  C

BC BC
00 01 11 10

BC BC

A 00 01 11 10 A A 00 01 11 10 A 00 01 11 10

0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1

1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1

 47

 Three-Variable K-Map Examples

• We can write any way either AB and C or A BC

BC BC BC

A 00 01 11 10 A 00 01 11 10 A 00 01 11 10

0 1 0 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1

BC BC BC

A 00 01 11 10 A 00 01 11 10 A 00 01 11 10

0 1 0 1 1 1 0

1 1 1 1 1 1 1 1

48

Determining the Minimum SOP Expression

from the Map (exercises)

CD CD

AB 00 01 11 10 AB 00 01 11 10

00 1 1 00 1 1

01 1 1 1 1 01 1 1 1

11 11 1 1 1

10 1 1 10 1 1 1

AB  AC  ABD D  ABC  BC 49

Four-Variable K-Maps

CD CD CD CD

AB
 00 01 11 10

AB
00 01 11 10

AB
00 01 11 10

AB
00 01 11 10

00 0 0 0 0 00 0 0 1 0 00 1 0 1 0 00 0 1 0 1

01 1 1 1 1 01 0 0 1 0 01 0 1 0 1 01 1 0 1 0

11 0 0 0 0 11 0 0 1 0 11 1 0 1 0 11 0 1 0 1

10 0 0 0 0 10 0 0 1 0 10 0 1 0 1 10 1 0 1 0

f  (4, 5, 6, 7)  A  B f (3, 7,11,15)  C  D
f  (0, 3, 5, 6, 9,10,12,15) f  (1, 2, 4, 7, 8,11,13,14)

f  A  B  C  D f  A  B  C  D

CD CD CD CD

AB
00 01 11 10

AB
00 01 11 10

AB
00 01 11 10

AB
00 01 11 10

00 0 1 1 0 00 1 0 0 1 00 0 0 0 0 00 1 1 1 1

01 0 1 1 0 01 1 0 0 1 01 1 1 1 1 01 0 0 0 0

11 0 1 1 0 11 1 0 0 1 11 1 1 1 1 11 0 0 0 0

10 0 1 1 0 10 1 0 0 1 10 0 0 0 0 10 1 1 1 1

f (1, 3,5, 7, 9,11,13,15) f  (0,2,4,6,8,10,12,14) f  (4,5,6,7,12,13,14,15) f  (0,1,2,3,8,9,10,11)

f  D f  D f  B f  B

 50

Practicing K-Map (SOP)

AB C  A BC  A B C  A B C  AB C

B  A C

B C D  A BC D  ABC D  A B CD  AB

CD  A B CD  A BCD  ABCD  AB CD

D  B C

51

Mapping Directly from a Truth Table

 I /P O /P

A

B

C

X

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

C
0 1

AB

00 1

01

11
 1 1

10 1

52

Do t Care Co ditio s

• Sometimes a situation arises in which some input
variable combinations are not allowed, i.e. BCD code:
– There are six invalid combinations: 1010, 1011, 1100,

1101, 1110, and 1111.
• Since these unallowed states will never occur in an

application involving the BCD code  they can be
treated as do t are ter s ith respe t to their

effect on the output.

• The do t are ter s a e used to ad a tage o the K-
map (how? see the next slide).

53

Do t Care Co ditio s

CD

 INPUTS O/P

 A B C D Y

AB

0 0 0 0 0

0 0 0 1 0

00

0 0 1 0 0

0 0 1 1 0

01

0 1 0 0 0

0 1 0 1 0 11

0 1 1 0 0

10

0 1 1 1 1

1

0

0

0

1

1 0 0 1 1
Without

1

0

1

0

X

Y 

1

0

1

1

X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

00 01 11 10

1

X X X X

1 1 X X

do t are

ABC  ABCD

With do t are

Y  A  BCD

54

Mapping a Standard POS Expression (full

example)

The expression:

C

0 1

(A  B  C)(A 

 C)(



 C)(

 B 

)

B A B A C AB

 000 010 110 101

00

0

01 0

11

0

10

0

55

Combinational Circuits

56

57

Designing Combinational Circuits

In general we have to do following steps:

1. Problem description
2. Input/output of the circuit
3. Define truth table
4. Simplification for each output
5. Draw the circuit

58

Decoder

• Is a combinational circuit that converts binary information
from n input lines to a maximum of 2

n
 unique output lines For

example if the number of input is n=3 the number of output
lines can be m=2

3
 . It is also known as 1 of 8 because one

output line is selected out of 8 available lines:

3 to 8
decoder

enable

59

60

Decoder with Enable Line

• Decoders usually have an enable line,

• If enable=0 , decoder is off. It means all

output lines are zero

• If enable=1, decoder is on and depending on

input, the corresponding output line is 1, all
other lines are 0

• See the truth table in next slide

61

Truth table for decoder

E a2 a1 a0 D7 D6 D5 D4 D3 D2 D1 D0

0 x x x 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1

……………………………………….

……………………………………..

1

1

1 1 1 1 1 0 0 0 0 0 0 0

62

63

Major application of Decoder

• Decoder is use to implement any combinational cicuits (f
n
)

For e a ple the truth ta le for full adder is s , ,z = ∑ , , ,

a d C , ,z = ∑ , , , . The i ple e tatio ith de oder is:

64

Multiplexer

• It is a combinational circuit that selects binary
information from one of the input lines and directs it
to a single output line

• Usually there are 2

n
 input lines and n selection

lines whose bit combinations determine which
input line is selected

• For example for 2-to-1 multiplexer if selection S is

zero then I0 has the path to output and if S is one I1
has the path to output (see the next slide)

65

2-to-1 multiplexer

66

67

Boolean function Implementation

• Another method for implementing
boolean function is using multiplexer

• For doing that assume boolean function has n
variables. We have to use multiplexer with n-
1 selection lines and

• 1- first n-1 variables of function is used for
data input

• 2- the remaining single variable (named z)is
used for data i put. Ea h data i put a e z, z , or .
From truth table we have to find the relation of F

and z to be able to design input lines. For example
: f , ,z = ∑ , , ,

68

69

F A,B,C,D = ∑ , , , , , , ,

70

Prgrammable Logic Organization

• Pre-fabricated building block of many AND/OR gates (or NOR, NAND)
• "Personalized" by making or breaking connections among the gates

Inputs

Dense array of Dense array of

AND gates Product OR gates

terms

Outputs

Programmable Array Block Diagram for Sum of Products Form

71

Basic Programmable Logic

Organizations

• Depending on which of the AND/OR logic
arrays is programmable, we have three
basic organizations

ORGANIZATION AND ARRAY OR ARRAY

PAL PROG. FIXED

PROM FIXED PROG.

PLA PROG. PROG.

72

PLA Logic Implementation

Key to Success: Shared Product Terms

Equations

F0 = A + B C

Example: F1 = A C + A B

 F2 = B C + A B

 F3 = B C + A

Personality Matrix

Product

Inputs

Outputs

 term A B C F0 F 1 F 2 F 3

 A B 1 1 - 0 1 1 0

0 0 0 1
Reuse

 B C - 0 1

of

0 1 0 0

 A C
 1 - 0

terms

1 0 1 0

B C

- 0 0

 A 1 - - 1 0 0 1

Input Side:

1 = asserted in term

0 = negated in term

- = does not participate

Output Side:

1 = term connected to output

0 = no connection to output

73

PLA Logic Implementation

Example Continued - Unprogrammed device

A B C

All possible connections are available
before programming

F0 F1 F2 F3

74

Sequential Circuits

• Circuits require memory to store intermediate data

• Sequential circuits use a periodic signal to determine when

to store values.
– A clock signal can determine storage times
– Clock signals are periodic

• Single bit storage element is a flip flop
• A basic type of flip flop is a latch
• Latches are made from logic gates

– NAND, NOR, AND, OR, Inverter

75

The story so far ...

• Logical operations which respond to combinations of
inputs to produce an output.
– Call these combinational logic circuits.

• For example, can add two numbers. But:
– No way of adding two numbers, then adding a third (a

sequential operation);
– No way of remembering or storing information after

inputs have been removed.

• To handle this, we need sequential logic capable of

storing intermediate (and final) results.

76

Sequential Circuits

Inputs Combinational

circuit

 Flip

Next Flops

state

Timing signal
(clock)

Clock

a periodic external event (input)

synchronizes when current state changes
happen keeps system well-behaved

makes it easier to design and build large systems

Outputs

Present

state

Clock

77

Sequential Circuits: Flip flops

78

Overview

• Latches respond to trigger levels on control inputs

– Example: If G = 1, input reflected at output
• Difficult to precisely time when to store data with latches
• Flip flips store data on a rising or falling trigger edge.

– Example: control input transitions from 0 -> 1, data

input appears at output

– Data remains stable in the flip flop until until next
rising edge.

• Different types of flip flops serve different functions
• Flip flops can be defined with characteristic functions.

79

D
 S

C

R

D C Q Q’

0 1 0 1

1 1 1 0 X 0

Q0 Q0’

D Latch

S’

Q

Q’

R’

S R C Q Q’

0 0 1 Q0 Q0’ Store

0 1 1 0 1 Reset

1 0 1 1 0 Set

1 1 1 1 1 Disallowed

X X 0 Q0 Q0’ Store

• When C is high, D passes from input to output (Q)

80

Master-Slave D Flip Flop

• Consider two latches combined together
• Only one C value active at a time
• Output changes on falling edge of the clock

81

D Flip-Flop
• Stores a value on the positive edge of C
• Input changes at other times have no effect on output

Positive edge triggered

D C

Q Q’

D Q

 0
 0 1

C
 Q’

1 1 0

X 0

Q0 Q0’

D gets latched to Q on the rising edge of the clock.

82

Clocked D Flip-Flop

• Stores a value on the positive edge of C
• Input changes at other times have no effect on output

83

Positive and Negative Edge D Flip-Flop

• D flops can be triggered on positive or negative edge
• Bubble before Clock (C) input indicates negative edge trigger

Lo-Hi edge Hi-Lo edge

84

Asynchronous Inputs

• J, K are synchronous inputs

o Effects on the output are synchronized with the CLK input.

• Asynchronous inputs operate independently of the synchronous

inputs and clock

o Set the FF to 1/0 states at any time.

85

Asynchronous Inputs

86

Asynchronous Inputs

• Note reset signal (R) for

D flip flop

• If R = 0, the output Q

is cleared

•This event can occur at

any time, regardless of

the value of the CLK

87

Parallel Data Transfer

• Flip flops store outputs from combinational logic
• Multiple flops can store a collection of data

88

Summary

• Flip flops are powerful storage elements

– They can be constructed from gates and latches!
• D flip flop is simplest and most widely used

• Asynchronous inputs allow for clearing and presetting the

flip flop output
• Multiple flops allow for data storage

– The basis of computer memory!
• Combine storage and logic to make a computation circuit
• Next time: Analyzing sequential circuits.

89

Counters

• Counters are important components in computers

– The increment or decrement by one in response to input
• Two main types of counters

– Ripple (asynchronous) counters
– Synchronous counters

• Ripple counters

– Flip flop output serves as a source for triggering other flip

flops
• Synchronous counters

– All flip flops triggered by a clock signal
• Synchronous counters are more widely used in industry.

90

Counters

• Counter: A register that goes through a prescribed series
of states

• Binary counter
– Counter that follows a binary sequence

– N bit binary counter counts in binary from n to 2
n-1

• Ripple counters triggered by initial Count signal
• Applications:

– Watches
– Clocks
– Alarms
– Web browser refresh

91

Binary Ripple Counter

• Reset signal sets all outputs to 0

• Count signal toggles output

of low-order flip flop

• Low-order flip flop provides

trigger for adjacent flip flop

• Not all flops change value

simultaneously
– Lower-order flops change

first

• Focus on D flip flop

implementation

92

Asynchronous Counters

• Each FF output drives the CLK input of the next FF.

• FFs do not change states in exact synchronism with the applied

clock pulses.
• There is delay between the responses of successive FFs.

• Ripple counter due to the way the FFs respond one after another in

a kind of rippling effect.

A3 A2 A1 A0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

1 0 0 0

1 0 0 1

93

Synchronous counters

• Synchronous(parallel) counters

– All of the FFs are triggered

simultaneously by the
clock input pulses.

– All FFs change at same time

• Remember

– If J=K=0, flop maintains value
– If J=K=1, flop toggles

• Most counters are synchronous

in computer systems.
• Can also be made from D flops

• Value increments on positive edge

94

Synchronous counters

• Synchronous counters

– Same counter as previous slide except Count enable replaced by J=K=1
– Note that clock signal is a square wave
– Clock fans out to all clock inputs

95

Circuit operation

• Count value increments on each negative edge
• Note that low-order bit (A) toggles on each clock cycle

96

Registers

 Register 


 Consists of N Flip-Flops 


 Stores N bits 


 Common clock used for all Flip-Flops 


 Shift Register 


 A register that provides the ability to shift
its contents (either left or right). 

 Must use Flip-Flops 


 Either edge-triggered or master-slave 


 Cannot use Level-sensitive Gated Latches 

97

Overview of Shift Registers

• A shift register is a sequential logic device

made up of flip-flops that allows parallel or

serial loading and serial or parallel outputs

as well as shifting bit by bit.

• Common tasks of shift registers:
– Serial/parallel data conversion
– Time delay
– Ring counter
– Twisted-ring counter or Johnson counter
– Memory device

98

Characteristics of Shift Registers

• Number of bits (4-bit, 8-bit, etc.)

• Loading

– Serial
– Parallel (asynchronous or synchronous)

• Common modes of operation.

– Parallel load
– Shift right-serial load
– Shift left-serial load
– Hold
– Clear

• Recirculating or non-recirculating

99

Serial/Parallel Data Conversion

Shift registers can be used to convert from serial-
to-parallel or the reverse from parallel-to-serial.

 Parallel out

 1 0 1 0 1 1 1 1 Serial out

Serial in

1 0 1 0 1 1 1 1

1 0 1 0 1 1 1 1

Parallel in

100

