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Fundamentals of Boolean Algebra 

 
 
 

• Basic Postulates  
 
• Postulate 1 (Definition): A Boolean algebra is a closed algebraic system 

containing a set K of two or more elements and the two operators  and +.   
• Postulate 2 (Existence of 1 and 0 element):  

• 

(a) a + 0 = a (identity for +), (b) a 1 = a (identity for ) 
 

Postulate 3 (Commutativity): 

(b) a b = b a 

 

• 

(a) a + b = b + a, 
 

Postulate 4 (Associativity): 

(b) a (bc) = (ab) c 

 

• 

(a) a + (b + c) = (a + b) + c 
 

Postulate 5 (Distributivity):    
 

 (a) a + (bc) = (a + b) (a + c) (b) a (b + c) = ab + ac 
 

•     Postulate 6 (Existence of complement): 
 

 

(a)  A  
 

 1 (b) 
 

 A 
 

• Normally is omitted. A  

 

 0 

 

A 
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Fundamentals of Boolean Algebra 

 
 
 

• Fundamental Theorems of Boolean Algebra  
 
 
• Theorem 1 (Idempotency):  

(a) a + a = a (b) aa = a 

• Theorem 2 (Null element): 
 

(a) a + 1 = 1 (b) a0 = 0 

• Theorem 3 (Involution) 
 

A  A  
 

• Properties of 0 and 1 elements (Table 2.1):  
 
 

OR AND Complement 

a + 0 = 0 a0 = 0 0' = 1 

a + 1 = 1 a1 = a 1' = 0 
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Fundamentals of Boolean Algebra (3) 

 

 

• Theorem 4 (Absorption) 
 

(a) a + ab = a (b) a(a + b) = a 

 

 

• Examples:   
–  (X + Y) + (X + Y)Z = X + Y   
–  AB'(AB' + B'C) = AB'   

• Theorem 5  
(a) a + a'b = a + b (b) a(a' + b) = ab 

 

 

• Examples:   
–  B + AB'C'D = B + AC'D  
–   (X + Y)((X + Y)' + Z) = (X + Y)Z  
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Fundamentals of Boolean Algebra (4) 

 
 

• Theorem 6 

 

(a) ab + ab' = a (b) (a + b)(a + b') = a 

 
 

 

• Examples:   
–  ABC + AB'C = AC   
– (W' + X' + Y' + Z')(W' + X' + Y' + Z)(W' + X' + Y + Z')(W' 

+ X' + Y + Z)   
= (W' + X' + Y')(W' + X' + Y + Z')(W' + X' + Y + Z)  

= (W' + X' + Y')(W' + X' + Y)   
= (W' + X')  
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Fundamentals of Boolean Algebra (5) 

 

 

• Theorem 7 

 

(a) ab + ab'c = ab + ac (b) (a + b)(a + b' 

+ c) = (a + b)(a + c)  
    
• Examples:   

–  wy' + wx'y + wxyz + wxz' = wy' + wx'y + wxy + wxz   
= wy' + wy + wxz'   
= w + wxz'   
= w   

–  (x'y' + z)(w + x'y' + z') = (x'y' + z)(w + x'y')  
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Fundamentals of Boolean Algebra (6) 

 

 

• Theorem 8 (DeMorgan's Theorem) 
 

(a) (a + b)' = a'b' (b) (ab)' = a' + b' 

 
 

• Generalized DeMorgan's Theorem 
 

(a) (a + b + … z)' = a'b' … z' (b) (ab … z)' = a' + b' + … z' 

 

 

• Examples:   
–  (a + bc)'  = (a + (bc))'  

= a'(bc)'   
= a'(b' + c')  

 
= a'b' + a'c' 

Note: (a + bc)' a'b' + c'  
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Logic Gates 

 
 

• Electrical Signals and Logic Values 

 
 
 

Electric Signal Logic Value 

 Positive Logic Negative Logic 

High Voltage (H) 1 0 

Low Voltage (L) 0 1 
 
 

 

– A signal that is set to logic 1 is said to be 
asserted, active, or true.  

 

– An active-high signal is asserted when it is 
high (positive logic).  

 

– An active-low signal is asserted when it is 
low (negative logic).  
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AND 

 
 
 
 
 
 
 

– Logic notation AB = C 

(Sometimes AB = C) 

 
 
 
 
 
 

A B C 
   

0 0 0 
   

0 1 0 
   

1 0 0 
   

1 1 1 
   

 
 
 
9 



OR 

 
 
 
 
 
 
 

–  Logic notation A + B = C 

 
 
 
 
 
 
 

 

A B C 
   

0 0 0 
   

0 1 1 
   

1 0 1 
   

1 1 1 
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Inversion (NOT) 

 
 
 
 
 

 
A Q 

 
 
 
 
 

0 1 

Logic: Q  A 

1 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11 



Exclusive OR (XOR) 

 
 
 
 
 
 
 
 
 
 
 
 

 

Either A or B, but not both 

 
 

This is sometimes called the inequality 
detector, because the result will be 0 
when the inputs are the same and 1 
when they are different. 

 

 

The truth table is the same as for 
S on Binary Addition. S = A  B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B S 
   

0 0 0 
   

1 0 1 
   

0 1 1 
   

1 1 0 
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UNIVERSAL GATES 
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NAND (NOT AND) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q  A  B 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A B Q 
   

0 0 1 
   

0 1 1 
   

1 0 1 
   

1 1 0 
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Basic Functional Components 

 
 
 

 

• AND, OR, and NOT gates constructed 
exclusively from NAND gates  

 

A 
AB 

F(A, B) = AB= AB A F(A, A) = AA = A  

 
 

B 
   

 

    
 

 AND gate   NOT gate 
 

 
 

 

A  A  
F(A, B) = A + B = A + B 

 

B                                   FNAND(A, A)  A  A  A   FNOT (A) 
B 

FNAND(A, B)  A B  A B  FAND(A, B) 
OR gate 

 

FNAND(A , B )  A B   A  B  FOR (A, B) 

 

Hence, NAND gate may be used to implement all three elementary operators. 
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NOR (NOT OR) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q  A  B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A B Q 
   

0 0 1 
   

0 1 0 
   

1 0 0 
   

1 1 0 
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Basic Functional Components 

 

 

• AND, OR, and NOT gates constructed exclusively from NOR gates. 

 

A A + B 
F(A, A) =A + A = A 

 

B 
F(A, B) =A + B A 

 

  
 

 OR gate NOT gate 
 

 
 
 
 

A A  
 

  F(A, B) =AB= AB 
 

B  
FNOR(A, A)  A  A  A   FNOT (A) 

 

 
B  

  
 

 AND gate FNOR(A, B)  A  B  A  B  FOR (A, B) 
 

 

FNOR(A , B )  A  B   A B  FAND(A, B) 
 
 
 

Hence, NOR gate may be used to implement all three elementary operators. 
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Summary 

 
 
 
 
 

Summary for all 2-input gates 

 

Inputs   Output of each gate    

          

A B AND NAND OR NOR  XOR XNOR  

          

0 0 0 1 0 1  0 1  
          

0 1 0 1 1 0  1 0  
          

1 0 0 1 1 0  1 0  
          

1 1 1 0 1 0  0 1  
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MINIMIZATON OF LOGIC EXPRESSION 

 
 

 

• Goal -- minimize the cost of realizing a switching function   
• Cost measures and other considerations   

–   Number of gates   
–   Number of levels   
–   Gate fan in and/or fan out   
–   Interconnection complexity   
–   Preventing hazards   

• Two-level realizations   
–   Minimize the number of gates (terms in switching function)   
–   Minimize the fan in (literals in switching function)   

• Commonly used techniques   
–   Boolean algebra postulates and theorems   
–   Karnaugh maps  
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Simplification Using Boolean Algebra 

 
 
 
 
 

• A simplified Boolean expression uses the 
fewest gates possible to implement a 
given expression.  

 

A  
 
 
 
 
 
 

AB+A(B+C)+B(B+C) 
 

B  
 

C  
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Simplification Using Boolean Algebra 

 

• AB+A(B+C)+B(B+C)   
– (distributive law)   

• AB+AB+AC+BB+BC  
 

– (BB=B)  
 

• AB+AB+AC+B+BC  
 

– (AB+AB=AB)  
 

• AB+AC+B+BC  
 

– (B+BC=B)  
 

• AB+AC+B  
 

– (AB+B=B)  
 

• B+AC  

 
 

 

A  
 

 

B  

C                     AB+A(B+C)+B(B+C) 
 
 
 
 
 
 
 
 
 
 

B B+AC  

 
 

 

 

A  
 

C 
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Simplification Using Boolean Algebra 

 
 
 

• Try these: 

 
 
 
 

[ AB (C  BD)  A B ]C 

 

A BC  AB C  A B C  AB C  

ABC AB  AC  A B C 

 
 
 
 
 
 
 
 
 
 

8  
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Standard Forms of Boolean Expressions 

 
 
 
 
 

• All Boolean expressions, regardless of 
their form, can be converted into either of 
two standard forms:   
– The sum-of-products (SOP) form   
– The product-of-sums (POS) form  

 
• Standardization makes the evaluation, 

simplification, and implementation of Boolean 
expressions much more systematic and easier.  
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The Sum-of-Products (SOP) Form 

 
 
 
 

• An SOP expression 
 when two or more 
product terms are 
summed by Boolean 
addition.  

 

–  Examples: 
 

AB  ABC 
 

ABC  CDE  B CD 
 

A B  A BC  AC 

–  Also: 

A  A BC  BCD 

 
 
 

 

 In an SOP form, a 

single overbar cannot 

extend over more than 

one variable; however, 

more than one variable 

in a term can have an 

overbar: 
 

example:A B Cis OK! 
 
 
 

BUTNOT:ABC 
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Converting Product Terms to Standard SOP 

 
 
 

 

• Step 1: Multiply each nonstandard product term by 
a term made up of the sum of a missing variable and 
its complement. This results in two product terms.   
– As you know, you can multiply anything by 1 

without changing its value.  
 
• Step 2: Repeat step 1 until all resulting product term 

contains all variables in the domain in either 
complemented or uncomplemented form. In 
converting a product term to standard form, the 
number of product terms is doubled for each missing 
variable.  
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Converting Product Terms to Standard 
SOP (example) 

 

 

• Convert the following Boolean expression 
into standard SOP form:  

 

ABC  AB  ABC D 
 
 

 

AB C  AB C (D  D )  AB CD  AB CD 
 
 
 

A B  A B (C  C )  A B C  A B C 
 

A B C (D  D )  A B C (D  D )  A B CD  A B CD  A B C D  A B C D 
 
 
 

AB C  A B  ABC D  AB CD  AB CD  A B CD  A B CD  A B C D  A B C D  ABC D 
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The Product-of-Sums (POS) Form 

 
 
 
 

•   When two or more    In a POS form, a single 
 

sum terms are    overbar cannot extend 
 

multiplied, the result over more than one 
 

expression is a product- variable; however, more 
 

of-sums (POS):    than one variable in a 
 

–  Examples:    term can have an 
 

( 

   

  B)( A  

  

 C ) 

   

overbar: 

 

 A B    
 

   

  

 

 

  

)(C  

 

 E)( 

 

 C  D) example: 
  

 

 

 

 

is OK! 
 

(  A B C D B A B C 
 

( A  B)( A  

 

 C )( 

 

 C ) 

            
 

B A             
 

                        

BUTNOT: 
 

 

 

– 
       

A  B  C 
 

Also:   

 D ) 

 
 

A( A  B  C)(B  C          
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Converting a Sum Term to Standard POS 

 
 
 
 

• Step 1: Add to each nonstandard product 
term a term made up of the product of 
the missing variable and its complement. 
This results in two sum terms.   
– As you know, you can add 0 to anything 

without changing its value.   
• Step 2: Apply rule  A+BC=(A+B)(A+C).  
 
• Step 3: Repeat step 1 until all resulting 

sum terms contain all variable in the 
domain in either complemented or 
uncomplemented form.  
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Converting a Sum Term to Standard 
POS (example) 

 

 

• Convert the following Boolean expression 
into standard POS form:  

 

( A  B  C)(B  C  D )( A  B  C  D) 
 
 
 
 

A  B  C  A  B  C  DD  ( A  B  C  D)( A  B  C  D ) 
 
 
 

B  C  D  B  C  D  AA  ( A  B  C  D )( A  B  C  D ) 
 
 

 

( A  B  C )(B  C  D )( A  B  C  D)  
 

( A  B  C  D)( A  B  C  D )( A  B  C  D )( A  B  C  D )( A  B  C  D) 
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Boolean Expressions & Truth Tables 

 
 
 

 

• All standard Boolean expression can be easily 
converted into truth table format using 
binary values for each term in the expression.  

 
• Also, standard SOP or POS expression can 

be determined from the truth table.  
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Converting SOP Expressions to Truth 
Table Format 

 
 

• Recall the fact:   
– An SOP expression is equal to 1 only if at least one of the 

product term is equal to 1.   
• Constructing a truth table:   

– Step 1: List all possible combinations of binary values 
of the variables in the expression.   

– Step 2: Convert the SOP expression to standard form if it 
is not already.   

– Step 3: Place a 1 in the output column (X) for each 
binary value that makes the standard SOP expression a 1 
and place 0 for all the remaining binary values.  
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Converting SOP Expressions to Truth 
Table Format (example) 

 

 

• Develop a truth table 
for the standard SOP 
expression  

 

 

ABC  ABC  ABC 

 
 
 

Inputs Output 
 

 A B C   X  
        

 0 0 0 0  
        

 0 0 1 1  
        

 0 1 0 0  
        

 0 1 1 0  
        

 1 0 0 1  
        

 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 
 
 

Product 
 

T erm 
 
 
 
 
 

A B C 

 
 
 
 
 
 

 

AB C 

 
 
 
 
 
 
 

ABC 
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Converting POS Expressions to Truth 
Table Format 

 
 

• Recall the fact:   
– A POS expression is equal to 0 only if at least one of 

the product term is equal to 0.   
• Constructing a truth table:   

– Step 1: List all possible combinations of binary values 
of the variables in the expression.   

– Step 2: Convert the POS expression to standard form if it 
is not already.   

– Step 3: Place a 0 in the output column (X) for each 
binary value that makes the standard POS expression a 0 
and place 1 for all the remaining binary values.  
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Converting POS Expressions to Truth 
Table Format (example) 

 

 

• Develop a truth table 
for the standard SOP 
expression  

 
 

( A  B  C)( A  B  C)( A  B  

C ) ( A  B  C )( A  B  C) 

 

 
 

                           

 I nputs O utput  Product 
 

 

A B 

 

C 

   

X 

  

Term 

 

       
 

                    
 

                          
 

0 0 0 0    ( A  B  C) 
 

                          
 

0 0 1 1                  
 

                          
 

       

( A  

   

 C) 

 

0 1 0 0    B 
 

                          
 

       

( A  

  

 
 

  

) 

 

0 1 1 0    B C 
 

                          
 

1 0 0 1                  
 

                          
 

       

( 

 

 B  

 

) 

 

1 0 1 0    A C 
 

                          
 

       

( 

 

 

 

 C) 

 

1 1 0 0    A B 
 

                          
 

1 1 1 1                  
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Determining Standard Expression from 
a Truth Table 

 

 

• To determine the standard SOP 
expression represented by a truth table.   

• Instructions:   
– Step 1: List the binary values of the input variables 

for which the output is 1.   
– Step 2: Convert each binary value to the 

corresponding product term by replacing:   
• each 1 with the corresponding variable, and   
• each 0 with the corresponding variable complement.  

 

• Example: 1010  AB CD  
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Determining Standard Expression from 
a Truth Table 

 

 

• To determine the standard POS 
expression represented by a truth table.   

• Instructions:   
– Step 1: List the binary values of the input variables 

for which the output is 0.   
– Step 2: Convert each binary value to the 

corresponding product term by replacing:   
• each 1 with the corresponding variable complement, and   
• each 0 with the corresponding variable.  

 

• Example: 1001  A  B  C  D  
 
 
 
 
36 



The Karnaugh Map 

 
 
 

 

• Feel a little difficult using Boolean algebra 
laws, rules, and theorems to simplify logic?  

 
• A K-map provides a systematic method for 

simplifying Boolean expressions and, if 
properly used, will produce the simplest 
SOP or POS expression possible, known as 
the minimum expression.  
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What is K-Map 

 
 

 

• It s si  ilar to truth ta le; i stead of  ei g orga ized 

 

(i/p and o/p) into columns and rows, the K-map is 
an array of cells in which each cell represents a 
binary value of the input variables. 

 

• The cells are arranged in a way so that 
simplification of a given expression is simply a 
matter of properly grouping the cells.  

 
• K-maps can be used for expressions with 2, 3, 4, 

and 5 variables.  
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The 3 Variable K-Map 

 
 

• There are 8 cells as shown: 

 
 

C 

0 1 
 

AB 
 

  
 

00 A B C A B C 
 

01  A BC       A BC 

11
 ABC ABC 

10 AB C   AB C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Or  

 

A 00        

 01   11 10     

 

 
 

0 

                                  
 

                        
 

              

A B C  A BC   A BC 

 

 A B C  
 

1 

                               
 

                 
 

 

AB C 

 

AB C 

 

ABC 

     
 

     ABC 
 

                           39  
 

                           
 



The 4-Variable K-Map 

 
 
 
 

 

CD 

 

AB 

 

00 

 
 

01 

 
 

11 

 
 

10 

 
 
 
 
 
 

 

00 01   11   10 

 
 
 

 

A B C D A B C D A B CDA B CD 
 
 
 

A BC D A BC D A BCD A BCD 
 
 

 
       

ABCD 

   

ABC D ABC D ABCD 
 

 
 

 

AB C D AB C D AB CD AB CD 
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K-Map SOP Minimization 

 
 
 

 

• The K-Map is used for simplifying Boolean 
expressions to their minimal form.  

 
• A minimized SOP expression contains the 

fewest possible terms with fewest 
possible variables per term.  

 
• Generally, a minimum SOP expression can 

be implemented with fewer logic gates than 
a standard expression.  
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Karnaugh Maps (K-maps) 

 
 

 

• If mi is a minterm of f, then place a 1 in cell i 
of the K-map.    

 

• If Mi is a maxterm of f, then place a 0 in cell i.  
 
 
 
 

• If di is a do t are of f, then place a d or x in 
cell i. 
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Examples 

 
 
 
 
 
 
 
 
 
 
 
 
 

• Two variable K-map 
f(A,B)=m(0,1,3)=A`B`+A`B+AB  

 
 
 
 
 
 
 
 
 
 
 
 

 B
  0

    1
 

 
 
 
 
 
 
 
 
 
 
 

A 0 1 

 

0 
 

1 1  
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Grouping the 1s (rules) 

 
 
 
 

1. A group must contain either 1,2,4,8,or 16 
cells (depending on number of variables in the 
expression)   

2. Each cell in a group must be adjacent to one or 
more cells in that same group, but all cells in the 
group do not have to be adjacent to each other.   

3. Always include the largest possible number of 1s 
in a group in accordance with rule 1.   

4. Each 1 on the map must be included in at least 
one group. The 1s already in a group can be 
included in another group as long as the 
overlapping groups include noncommon 1s.  
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Determining the Minimum SOP Expression 

from the Map 

 

 

2. Determine the minimum product term for 
each group.   
• For a 3-variable map:   

1. A 1-cell group yields a 3-variable product term   
2. A 2-cell group yields a 2-variable product term   
3. A 4-cell group yields a 1-variable product term   
4. An 8-cell group yields a value of 1 for the expression.   

• For a 4-variable map:   
1. A 1-cell group yields a 4-variable product term   
2. A 2-cell group yields a 3-variable product term   
3. A 4-cell group yields a 2-variable product term   
4. An 8-cell group yields a a 1-variable product term   
5. A 16-cell group yields a value of 1 for the expression.  
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Determining the Minimum SOP Expression 

from the Map (example) 
 

CD 

00 01 11 10 
B  A C  AC D  

 
 

AB 

      
 

                  
 

                   
 

00 

      

1 1 

      
 

      A C  

             
 

01 1 1 1 1 
B 

 

             
 

11 1 1 1 1 

 

      
 

             

AC D 

 

10 

   

1 
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Three-Variable K-Maps 

 
 
 

 

f  (0,4)  B C  f  (4,5)  A B  f  (0,1,4,5)  B  f  (0,1,2,3)  A  
 

BC 
00 01 11 10 

BC 
00 01 11 10 

BC     BC 
00 01 11 10 

 

A A A 00 01 11 10 A  

                
 

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 
 

1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 
 

f  (0,4)  A C  f  (4,6)  A C  f  (0,2)  A C  f  (0,2,4,6)  C  
 

BC     BC 
00 01 11 10 

BC     BC     
 

A 00 01 11 10 A A 00 01 11 10 A 00 01 11 10 
 

                
 

0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 
 

1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 
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      Three-Variable K-Map Examples       
 

•    We can write any way either AB and C or A BC       
 

BC     BC      BC     
 

A 00 01 11 10 A 00 01 11 10  A 00 01 11 10 
 

             
 

0   1   0  1  1 1  0    1 1 
 

                   
 

1  1  1 1 1  1   1  1  1 1   
 

                   
 

 
 
 
 
 
 
 
 
 
 

 

BC      BC     BC    
 

A 00 01 11 10 A 00 01 11 10 A 00 01 11 10 
 

              
 

0    1   0  1 1 1  0     
 

                  
 

1  1  1 1  1  1 1   1     
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Determining the Minimum SOP Expression 

from the Map (exercises) 

 
 

CD           CD               

AB 00 01 11 10 AB 00 01 11 10   

                            
                            

                            

00 1 1      00   1       1   

                            
                            

01 1 1 1 1 01   1 1    1   

                            
                            

                            

11           11   1 1    1   

                            
                            

10   1 1    10   1    1 1   
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Four-Variable K-Maps 

 
 
 

CD     CD    CD    CD    
 

AB 
 00 01 11 10 

AB 
00 01 11 10 

AB 
00 01 11 10 

AB 
00 01 11 10 

 

                 
 

00  0 0 0 0 00 0 0 1 0 00 1 0 1 0 00 0 1 0 1 
 

01  1 1 1 1 01 0 0 1 0 01 0 1 0 1 01 1 0 1 0 
 

11  0 0 0 0 11 0 0 1 0 11 1 0 1 0 11 0 1 0 1 
 

10  0 0 0 0 10 0 0 1 0 10 0 1 0 1 10 1 0 1 0 
 

f  (4, 5, 6, 7)  A  B f (3, 7,11,15)  C  D 
f  (0, 3, 5, 6, 9,10,12,15) f  (1, 2, 4, 7, 8,11,13,14) 

 

f  A  B  C  D f  A  B  C  D 
 

           
 

CD      CD     CD     CD     
 

AB 
00 01 11 10 

AB 
00 01 11 10 

AB 
00 01 11 10 

AB 
00 01 11 10 

 

                 
 

00  0 1 1 0 00 1 0 0 1 00 0 0 0 0 00 1 1 1 1 
 

01  0 1 1 0 01 1 0 0 1 01 1 1 1 1 01 0 0 0 0 
 

11  0 1 1 0 11 1 0 0 1 11 1 1 1 1 11 0 0 0 0 
 

10  0 1 1 0 10 1 0 0 1 10 0 0 0 0 10 1 1 1 1 
 

f (1, 3,5, 7, 9,11,13,15) f  (0,2,4,6,8,10,12,14) f  (4,5,6,7,12,13,14,15) f  (0,1,2,3,8,9,10,11) 
 

f  D     f  D     f  B     f  B     
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Practicing K-Map (SOP) 

 
 

 

AB C  A BC  A B C  A B C  AB C 

 
 

B  A C 
 
 
 

 

B C D  A BC D  ABC D  A B CD  AB 

CD  A B CD  A BCD  ABCD  AB CD 

 
 

D  B C 
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Mapping Directly from a Truth Table 

 
 

 
              

  I /P    O /P 
 

 

A 

  

B 

 

C 

  

X 

 

      
 

             
 

0 0  0 1  
 

             
 

0 0  1 0  
 

             
 

0 1  0 0  
 

             
 

0 1  1 0  
 

             
 

1 0  0 1  
 

             
 

1 0  1 0  
 

             
 

1 1  0 1  
 

             
 

1 1  1 1  
 

             
 

 
 
 
 
 

 

C 
0 1 

 

AB 

00 1 

 
 

01 

11
 1 1 

10 1 
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Do  t Care  Co ditio s 

 
 
 
 

• Sometimes a situation arises in which some input 
variable combinations are not allowed, i.e. BCD code:   
– There are six invalid combinations: 1010, 1011, 1100, 

1101, 1110, and 1111.   
• Since these unallowed states will never occur in an  
 

application involving the BCD code  they can be 
treated as do t are ter s ith respe t to their 

effect on the output. 
 

• The do t are ter s a e used to ad a tage o the K-
map (how? see the next slide). 
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Do  t Care  Co ditio s 

 
 
                    

CD 

 

     INPUTS    O/P 
 

 A   B     C   D   Y  

AB 

 

                    
 

0  0   0   0  0   
 

                      

0  0   0   1  0   

00 

 

                    
 

0  0   1   0  0   
 

                     
 

0  0   1   1  0   

01 
 

                    
 

0  1   0   0  0   
 

         
 

                     
 

0  1   0   1  0   11 
 

                    
 

0  1   1   0  0   
 

         
 

                    

10 

 

0  1   1   1  1   
 

                    
 

1 
 

0 
  

0 
  

0 
 

1 
  

 

         
 

                     
 

1  0   0   1  1   
Without 

 

                    
 

1 
 

0 
  

1 
  

0 
  

X 
 

       

Y  
 

                    
 

1 
 

0 
  

1 
  

1 
  

X 
 

        
 

                     
 

1  1   0   0   X  
 

                     
 

1  1   0   1   X  
 

                     
 

1  1   1   0   X  
 

                     
 

1  1   1   1   X  
 

                     
  

 
 
 
 

00  01  11  10 

 
 
 
 
 
 

1 

 

X X   X   X 

 

1 1 X X 

 

 

do  t  are 

ABC  ABCD 
 

 

With do  t  are 

Y  A  BCD 
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Mapping a Standard POS Expression (full 

example) 

 

The expression:      

C 

   
 

                     

0 1 

 

( A  B  C)( A  
  

 C)( 
  

 
  

 C)( 
 

 B  
 

) 
 

 

        

B A B A C AB 
 

                        
 

 000  010   110   101  

00 

   
 

   
 

 
0 

 
 

                      
 

                      
 

                      
 

                       
 

                     

01 0 

 
 

                      
 

                       
 

                     

11 

    

                     

0 

 
 

                      
 

                     

10 

   
 

                       

0 

 

                       
 

                        
 

 

55 



Combinational Circuits 
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Designing Combinational Circuits 

 
 

 

In general we have to do following steps: 

 

1. Problem description   
2. Input/output of the circuit   
3. Define truth table   
4. Simplification for each output   
5. Draw the circuit  
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Decoder 

 
 

 

• Is a combinational circuit that converts binary information   
from n input lines to a maximum of 2

n
 unique output lines For 

example if the number of input is n=3 the number of output   
lines can be m=2

3
 . It is also known as 1 of 8 because one 

output line is selected out of 8 available lines:  
 
 
 
 
 
 
 
 

 

3 to 8 
decoder 

 
 
 
 

 

enable 
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Decoder with Enable Line 

 
 

 

• Decoders usually have an enable line,  
 
• If enable=0 , decoder is off. It means all 

output lines are zero  
 
• If enable=1, decoder is on and depending on 

input, the corresponding output line is 1, all 
other lines are 0   

• See the truth table in next slide  
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Truth table for decoder 

 
 

 

E a2 a1 a0  D7 D6 D5 D4 D3 D2 D1 D0 
 

----------------------------------------------------------- 
 

0 x  x  x   0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 

1 0 0 1 0 0 0 0 0 0 1 0 
 

1 
 

………………………………………. 
 

…………………………………….. 
 

1          

1          

1 1 1 1 1 0 0 0 0 0 0 0 
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Major application of Decoder 

 

• Decoder is use to implement any combinational cicuits ( f
n
 ) 

 

For e a ple the truth ta le for full adder is s , ,z = ∑   , , , 

a d C , ,z = ∑  , , ,  . The i  ple  e tatio ith de oder is: 
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Multiplexer 

 
 
 

 

• It is a combinational circuit that selects binary 
information from one of the input lines and directs it 
to a single output line  

 
• Usually there are 2

n
 input lines and n selection 

lines whose bit combinations determine which 
input line is selected  

 
• For example for 2-to-1 multiplexer if selection S is 

zero then I0 has the path to output and if S is one I1 
has the path to output (see the next slide)  
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2-to-1 multiplexer 
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Boolean function Implementation 

 
 
 
 

• Another method for implementing 
boolean function is using multiplexer  

 

• For doing that assume boolean function has n 
variables. We have to use multiplexer with n-
1 selection lines and  

 

• 1- first n-1 variables of function is used for 
data input  

 

• 2- the remaining single variable ( named z )is 
used for data i put. Ea h data i put a e z, z , or .  
From truth table we have to find the relation of F 

 

and z to be able to design input lines. For example 
: f , ,z = ∑ , , , 
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F A,B,C,D = ∑  , , ,  ,  ,  ,  , 
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Prgrammable Logic Organization 

 
 

 

• Pre-fabricated building block of many AND/OR gates (or NOR, NAND)   
• "Personalized" by making or breaking connections among the gates  
 
 
 
 
 

 

Inputs 
 
 

 

Dense array of Dense array of 

AND gates Product OR gates 

terms 
 
 

 

Outputs 
 
 
 

 

Programmable Array Block Diagram for Sum of Products Form 
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Basic Programmable Logic 

Organizations 

 
 

• Depending on which of the AND/OR logic 
arrays is programmable, we have three 
basic organizations  

 

ORGANIZATION AND ARRAY OR ARRAY 
 

 

PAL PROG. FIXED 
 
 
 

PROM FIXED PROG. 
 

 

PLA PROG. PROG. 
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PLA Logic Implementation 

 
 

Key to Success: Shared Product Terms 

 

Equations 
 

F0 = A + B C 

Example: F1 = A C + A B 
     

 F2 = B C + A B 
     

 F3 = B C + A 
 
 

 

Personality Matrix 
 

Product 
 

Inputs 
 

Outputs 
  

 

    
 

 term  A B C  F0 F 1 F 2 F 3  
 

 A B  1 1 -  0 1 1 0  
 

           

0 0 0 1 
Reuse 

 

 B C  - 0 1  
 

   

of 
 

           

0 1 0 0 

 

 A C 
 1 - 0 

 
 

   

terms 
 

           

1 0 1 0 

 

 

B C 
 

- 0 0 
 

 

    
 

  A  1 - -  1 0 0 1  
 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input Side: 
 

1 = asserted in term 

0 = negated in term 

- = does not participate 

 

Output Side: 
 

1 = term connected to output 

0 = no connection to output 
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PLA Logic Implementation 

 

Example Continued - Unprogrammed device 

 

A B C 

 
 
 
 
 

 

All possible connections are available 
before programming 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F0 F1 F2 F3 
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Sequential Circuits 

 
 
 
 

 

• Circuits require memory to store intermediate data  
 
• Sequential circuits use a periodic signal to determine when 

to store values.   
–  A clock signal can determine storage times   
–  Clock signals are periodic   

• Single bit storage element is a flip flop   
• A basic type of flip flop is a latch   
• Latches are made from logic gates   

–  NAND, NOR, AND, OR, Inverter  
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The story so far ... 

 
 
 
 
 
 

 

• Logical operations which respond to combinations of 
inputs to produce an output.   
–  Call these combinational logic circuits.   

• For example, can add two numbers. But:   
– No way of adding two numbers, then adding a third (a 

sequential operation);   
– No way of remembering or storing information after 

inputs have been removed.  
 
• To handle this, we need sequential logic capable of 

storing intermediate (and final) results.  
 
 
 
 
 
 
 
 
 
76 



Sequential Circuits 

 

Inputs Combinational   
 

   
 

 

circuit 

  
 

  Flip 
 

   
 

  

Next Flops 

 

  
 

   
 

  

state 
 

 

   
 

 
 
 
 
 
 
 

Timing signal 
(clock) 

 

Clock 
 

a periodic external event (input) 
 
 
 
 

synchronizes when current state changes 
happen keeps system well-behaved 

makes it easier to design and build large systems 

 
 
 
 
 

 

Outputs 
 
 
 
 
 
 

Present 
 

state 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clock 
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Sequential Circuits: Flip flops 
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Overview 

 

• Latches respond to trigger levels on control inputs  
 

–  Example: If G = 1, input reflected at output   
• Difficult to precisely time when to store data with latches   
• Flip flips store data on a rising or falling trigger edge.  

 
– Example: control input transitions from 0 -> 1, data 

input appears at output  
 

– Data remains stable in the flip flop until until next 
rising edge.   

• Different types of flip flops serve different functions   
• Flip flops can be defined with characteristic functions.  
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D
   S

 

 

C 
 
 
 
 
 

 

R 
 

D C Q    Q’ 
 

0  1  0  1 
 

1 1 1 0 X 0 

Q0 Q0’ 

D Latch 
 

S’ 
 

Q 
 
 
 
 
 

Q’ 
 

R’ 
 

S R C Q    Q’ 
 

0  0  1  Q0    Q0’  Store 

0  1  1  0  1  Reset 

1  0  1  1  0  Set 

1  1  1  1  1  Disallowed 

X  X  0  Q0    Q0’  Store 

 

 

• When C is high, D passes from input to output (Q) 
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Master-Slave D Flip Flop 

 

 

• Consider two latches combined together   
• Only one C value active at a time   
• Output changes on falling edge of the clock  
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D Flip-Flop  
• Stores a value on the positive edge of C   
• Input changes at other times have no effect on output  
 
 
 

 

Positive edge triggered 

 

    

D C 

 

Q Q’ 

 

     
 

 

D Q 

        

 0 
  0 1 

 
 

      
 

C 
 Q’ 

1   1 0  
 

  

X 0 

 

Q0 Q0’ 

 

     
 

          
 

          
 

 

D gets latched to Q on the rising edge of the clock. 
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Clocked D Flip-Flop 

 
 
 
 

• Stores a value on the positive edge of C   
• Input changes at other times have no effect on output  
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Positive and Negative Edge D Flip-Flop 

 
 

• D flops can be triggered on positive or negative edge   
• Bubble before Clock (C) input indicates negative edge trigger  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lo-Hi edge Hi-Lo edge  
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Asynchronous Inputs 
 
 
 
 

•  J, K are synchronous inputs 

 

o Effects on the output are synchronized with the CLK input. 

 

• Asynchronous inputs operate independently of the synchronous 

inputs and clock 
 

o Set the FF to 1/0 states at any time. 
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Asynchronous Inputs 
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Asynchronous Inputs 
 
 
 
 
 
 
 
 

 

• Note reset signal (R) for 

D flip flop 
 

• If R = 0, the output Q 

is cleared 
 

•This event can occur at 

any time, regardless of 

the value of the CLK 
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Parallel Data Transfer 

 

 

• Flip flops store outputs from combinational logic   
• Multiple flops can store a collection of data  
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Summary 

 

 

• Flip flops are powerful storage elements  
 

–  They can be constructed from gates and latches!   
• D flip flop is simplest and most widely used  
 
• Asynchronous inputs allow for clearing and presetting the 

flip flop output   
• Multiple flops allow for data storage  
 

–  The basis of computer memory!   
• Combine storage and logic to make a computation circuit   
• Next time: Analyzing sequential circuits.  
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Counters 

 

• Counters are important components in computers  
 

–  The increment or decrement by one in response to input   
• Two main types of counters  
 

–  Ripple (asynchronous) counters   
–  Synchronous counters   

• Ripple counters  
 

– Flip flop output serves as a source for triggering other flip 

flops   
• Synchronous counters  
 

–  All flip flops triggered by a clock signal   
• Synchronous counters are more widely used in industry.  
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Counters 

 
 
 

 

• Counter: A register that goes through a prescribed series 
of states   

• Binary counter   
–  Counter that follows a binary sequence   

–  N bit binary counter counts in binary from n to 2
n-1

   
• Ripple counters triggered by initial Count signal   
• Applications:   

–  Watches   
–  Clocks   
–  Alarms   
–  Web browser refresh  
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Binary Ripple Counter 

 
 
 
 
 
 
 
 
 

• Reset signal sets all outputs to 0  
 
• Count signal toggles output 

of low-order flip flop  
 
• Low-order flip flop provides 

trigger for adjacent flip flop  
 
• Not all flops change value 

simultaneously   
– Lower-order flops change 

first  
 
• Focus on D flip flop 

implementation  
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Asynchronous Counters 

 
 
 
 

• Each FF output drives the CLK input of the next FF.  
 
• FFs do not change states in exact synchronism with the applied 

clock pulses.   
• There is delay between the responses of successive FFs.  
 
• Ripple counter due to the way the FFs respond one after another in 

a kind of rippling effect.  
 
 
 
 
 
 

 

A3 A2   A1   A0 

0 0 0  0 

0 0 0  1 

0 0 1  0 

0 0 1  1 

0 1 0  0 

0 1 0  1 

1 0 0  0 

1 0 0  1 
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Synchronous counters 

 
 

 

• Synchronous(parallel) counters  
 

– All of the FFs are triggered 

simultaneously by the 
clock input pulses.  

 
–   All FFs change at same time   

• Remember  
 

–   If J=K=0, flop maintains value   
–   If J=K=1, flop toggles  

 
• Most counters are synchronous 

in computer systems.   
• Can also be made from D flops  
 
• Value increments on positive edge  
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Synchronous counters 

 
 
 
 
 
 

 

• Synchronous counters  
 

–   Same counter as previous slide except Count enable replaced by J=K=1   
–   Note that clock signal is a square wave   
–   Clock fans out to all clock inputs  
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Circuit operation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

• Count value increments on each negative edge   
• Note that low-order bit (A) toggles on each clock cycle  
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Registers 

 Register 


 Consists of N Flip-Flops 


 Stores N bits 


 Common clock used for all Flip-Flops 


 Shift Register 


 A register that provides the ability to shift 
its contents (either left or right). 

 Must use Flip-Flops 


 Either edge-triggered or master-slave 


 Cannot use Level-sensitive Gated Latches 
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Overview of Shift Registers 

 
 

 

• A shift register is a sequential logic device 

made up of flip-flops that allows parallel or 

serial loading and serial or parallel outputs 

as well as shifting bit by bit.  
 

• Common tasks of shift registers:   
–    Serial/parallel data conversion   
–     Time delay   
–    Ring counter   
–    Twisted-ring counter or Johnson counter   
–    Memory device  
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Characteristics of Shift Registers 

 

• Number of bits (4-bit, 8-bit, etc.)  
  
• Loading   

–  Serial   
–  Parallel (asynchronous or synchronous)  

 
• Common modes of operation.   

–  Parallel load   
–  Shift right-serial load   
–  Shift left-serial load   
–  Hold   
–  Clear  

 
• Recirculating or non-recirculating  
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Serial/Parallel Data Conversion 

 
 
 
 

Shift registers can be used to convert from serial-
to-parallel or the reverse from parallel-to-serial. 
 
 
 
 
 
 
 
 

 Parallel out  
 

 1 0 1 0 1 1 1 1 Serial out 
 

Serial in 

1 0 1 0 1 1 1 1  
 

1 0 1 0 1 1 1 1  
 

 
 

Parallel in 
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