
Design and Analysis of Algorithm

1

UNIT - II

DIVIDE AND CONQUER:

 General method:

 Given a function to compute on „n‟ inputs the divide-and-conquer strategy

suggests splitting the inputs into „k‟ distinct subsets, 1<k<=n, yielding „k‟ sub

problems.

 These sub problems must be solved, and then a method must be found to combine

sub solutions into a solution of the whole.

 If the sub problems are still relatively large, then the divide-and-conquer strategy

can possibly be reapplied.

 Often the sub problems resulting from a divide-and-conquer design are of the

same type as the original problem.

 For those cases the re application of the divide-and-conquer principle is naturally

expressed by a recursive algorithm.

 D And C(Algorithm) is initially invoked as D and C(P), where „p‟ is the problem

to be solved.

 Small(P) is a Boolean-valued function that determines whether the i/p size is

small enough that the answer can be computed without splitting.

 If this so, the function „S‟ is invoked.

 Otherwise, the problem P is divided into smaller sub problems.

 These sub problems P1, P2 …Pk are solved by recursive application of D And C.

 Combine is a function that determines the solution to p using the solutions to the

„k‟ sub problems.

 If the size of „p‟ is n and the sizes of the „k‟ sub problems are n1, n2 ….nk,

respectively, then the computing time of D And C is described by the recurrence

relation.

 T(n)= { g(n) n small

 T(n1)+T(n2)+……………+T(nk)+f(n); otherwise.

Design and Analysis of Algorithm

2

 Where T(n) is the time for D And C on any I/p of size „n‟.

 g(n) is the time of compute the answer directly for small I/ps.

 f(n) is the time for dividing P & combining the solution to

 sub problems.

1. Algorithm D And C(P)

2. {

3. if small(P) then return S(P);

4. else

5. {

6. divide P into smaller instances

 P1, P2… Pk, k>=1;

7. Apply D And C to each of these sub problems;

8. return combine (D And C(P1), D And C(P2),…….,D And C(Pk));

9. }

10. }

 The complexity of many divide-and-conquer algorithms is given by recurrences

 of the form

 T(n) = { T(1) n=1

 AT(n/b)+f(n) n>1

 Where a & b are known constants.

 We assume that T(1) is known & „n‟ is a power of b(i.e., n=b^k)

 One of the methods for solving any such recurrence relation is called the

substitution method.

 This method repeatedly makes substitution for each occurrence of the function. T

is the Right-hand side until all such occurrences disappear.

Example:

1) Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n.

We have,

 T(n) = 2T(n/2)+n

 = 2[2T(n/2/2)+n/2]+n

 = [4T(n/4)+n]+n

 = 4T(n/4)+2n

 = 4[2T(n/4/2)+n/4]+2n

 = 4[2T(n/8)+n/4]+2n

 = 8T(n/8)+n+2n

 = 8T(n/8)+3n

 *

 *

 *

 In general, we see that T(n)=2^iT(n/2^i)+in., for any log n >=I>=1.

Design and Analysis of Algorithm

3

 T(n) =2^log n T(n/2^log n) + n log n

Corresponding to the choice of i=log n

 Thus, T(n) = 2^log n T(n/2^log n) + n log n

 = n. T(n/n) + n log n

 = n. T(1) + n log n [since, log 1=0, 2^0=1]

 = 2n + n log n

BINARY SEARCH

1. Algorithm Bin search(a,n,x)

2. // Given an array a[1:n] of elements in non-decreasing

3. //order, n>=0,determine whether „x‟ is present and

4. // if so, return „j‟ such that x=a[j]; else return 0.

5. {

6. low:=1; high:=n;

7. while (low<=high) do

8. {

9. mid:=[(low+high)/2];

10. if (x<a[mid]) then high;

11. else if(x>a[mid]) then

 low=mid+1;

12. else return mid;

13. }

14. return 0;

15. }

 Algorithm, describes this binary search method, where Binsrch has 4I/ps a[], I , l

& x.

 It is initially invoked as Binsrch (a,1,n,x)

 A non-recursive version of Binsrch is given below.

 This Binsearch has 3 i/ps a,n, & x.

 The while loop continues processing as long as there are more elements left to

check.

 At the conclusion of the procedure 0 is returned if x is not present, or „j‟ is

returned, such that a[j]=x.

 We observe that low & high are integer Variables such that each time through the

loop either x is found or low is increased by at least one or high is decreased at

least one.

mid:=[(low+high)/2

Design and Analysis of Algorithm

4

 Thus we have 2 sequences of integers approaching each other and eventually low

becomes > than high & causes termination in a finite no. of steps if „x‟ is not

present.

Example:

1) Let us select the 14 entries.

 -15,-6,0,7,9,23,54,82,101,112,125,131,142,151.

 Place them in a[1:14], and simulate the steps Binsearch goes through as it searches for

different values of „x‟.

 Only the variables, low, high & mid need to be traced as we simulate the algorithm.

 We try the following values for x: 151, -14 and 9.

 for 2 successful searches &

 1 unsuccessful search.

 Table. Shows the traces of Bin search on these 3 steps.

X=151 low high mid

 1 14 7

 8 14 11

 12 14 13

 14 14 14

 Found

 x=-14 low high mid

 1 14 7

 1 6 3

 1 2 1

 2 2 2

 2 1 Not found

 x=9 low high mid

 1 14 7

 1 6 3

 4 6 5

 Found

Theorem: Algorithm Binsearch(a,n,x) works correctly.

Proof:

We assume that all statements work as expected and that comparisons such as x>a[mid]

are appropriately carried out.

 Initially low =1, high= n,n>=0, and a[1]<=a[2]<=……..<=a[n].

 If n=0, the while loop is not entered and is returned.

Design and Analysis of Algorithm

5

 Otherwise we observe that each time thro‟ the loop the possible elements to be

checked of or equality with x and a[low], a[low+1],……..,a[mid],……a[high].

 If x=a[mid], then the algorithm terminates successfully.

 Otherwise, the range is narrowed by either increasing low to (mid+1) or

decreasing high to (mid-1).

 Clearly, this narrowing of the range does not affect the outcome of the search.

 If low becomes > than high, then „x‟ is not present & hence the loop is exited.

Maximum and Minimum:

 Let us consider another simple problem that can be solved by the divide-and-

conquer technique.

 The problem is to find the maximum and minimum items in a set of „n‟ elements.

 In analyzing the time complexity of this algorithm, we once again concentrate on

the no. of element comparisons.

 More importantly, when the elements in a[1:n] are polynomials, vectors, very

large numbers, or strings of character, the cost of an element comparison is much

higher than the cost of the other operations.

 Hence, the time is determined mainly by the total cost of the element comparison.

1. Algorithm StraightMaxMin(a,n,max,min)

2. // set max to the maximum & min to the minimum of a[1:n]

3. {

4. max:=min:=a[1];

5. for I:=2 to n do

6. {

7. if(a[I]>max) then max:=a[I];

8. if(a[I]<min) then min:=a[I];

9. }

10. }

Algorithm: Straight forward Maximum & Minimum

 Straight MaxMin requires 2(n-1) element comparison in the best, average & worst

cases.

 An immediate improvement is possible by realizing that the comparison a[I]<min

is necessary only when a[I]>max is false.

Design and Analysis of Algorithm

6

 Hence we can replace the contents of the for loop by,

 If(a[I]>max) then max:=a[I];

 Else if (a[I]<min) then min:=a[I];

 Now the best case occurs when the elements are in increasing order.

 The no. of element comparison is (n-1).

 The worst case occurs when the elements are in decreasing order.

 The no. of elements comparison is 2(n-1)

 The average no. of element comparison is < than 2(n-1)

 On the average a[I] is > than max half the time, and so, the avg. no. of

comparison is 3n/2-1.

 A divide- and conquer algorithm for this problem would proceed as follows:

 Let P=(n, a[I] ,……,a[j]) denote an arbitrary instance of the problem.

 Here „n‟ is the no. of elements in the list (a[I],….,a[j]) and we are interested in

finding the maximum and minimum of the list.

 If the list has more than 2 elements, P has to be divided into smaller instances.

 For example , we might divide „P‟ into the 2 instances,

P1=([n/2],a[1],……..a[n/2]) & P2= (n-[n/2],a[[n/2]+1],…..,a[n])

 After having divided „P‟ into 2 smaller sub problems, we can solve them by

recursively invoking the same divide-and-conquer algorithm.

 Algorithm: Recursively Finding the Maximum & Minimum

1. Algorithm MaxMin (I,j,max,min)

2. //a[1:n] is a global array, parameters I & j

3. //are integers, 1<=I<=j<=n.The effect is to

4. //set max & min to the largest & smallest value

5. //in a[I:j], respectively.

6. {

7. if(I=j) then max:= min:= a[I];

8. else if (I=j-1) then // Another case of small(p)

9. {

10. if (a[I]<a[j]) then

11. {

12. max:=a[j];

13. min:=a[I];

14. }

Design and Analysis of Algorithm

7

15. else

16. {

17. max:=a[I];

18. min:=a[j];

19. }

20. }

21. else

22. {

23. // if P is not small, divide P into subproblems.

24. // find where to split the set mid:=[(I+j)/2];

25. //solve the subproblems

26. MaxMin(I,mid,max.min);

27. MaxMin(mid+1,j,max1,min1);

28. //combine the solution

29. if (max<max1) then max=max1;

30. if(min>min1) then min = min1;

31. }

32. }

 The procedure is initially invoked by the statement,

 MaxMin(1,n,x,y)

 Suppose we simulate MaxMin on the following 9 elements

A: [1] [2] [3] [4] [5] [6] [7] [8] [9]

 22 13 -5 -8 15 60 17 31 47

 A good way of keeping track of recursive calls is to build a tree by adding a node

each time a new call is made.

 For this Algorithm, each node has 4 items of information: I, j, max & imin.

 Examining fig: we see that the root node contains 1 & 9 as the values of I &j

corresponding to the initial call to MaxMin.

 This execution produces 2 new calls to MaxMin, where I & j have the values 1, 5

& 6, 9 respectively & thus split the set into 2 subsets of approximately the same

size.

 From the tree, we can immediately see the maximum depth of recursion is 4.

(including the 1
st
 call)

 The include no.s in the upper left corner of each node represent the order in which

max & min are assigned values.

No. of element Comparison:

 If T(n) represents this no., then the resulting recurrence relations is

 T(n)={ T([n/2]+T[n/2]+2 n>2

1 n=2

0 n=1

mid:=[(I+j)/2

Design and Analysis of Algorithm

8

 When „n‟ is a power of 2, n=2^k for some +ve integer „k‟, then

T(n) = 2T(n/2) +2

 = 2(2T(n/4)+2)+2

 = 4T(n/4)+4+2

 *

 *

 = 2^k-1T(2)+

 = 2^k-1+2^k-2

 = 2^k/2+2^k-2

 = n/2+n-2

 = (n+2n)/2)-2

T(n)=(3n/2)-2

*Note that (3n/3)-3 is the best-average, and worst-case no. of comparisons when „n‟

is a power of 2.

MERGE SORT

 As another example divide-and-conquer, we investigate a sorting algorithm that

has the nice property that is the worst case its complexity is O(n log n)

 This algorithm is called merge sort

 We assume throughout that the elements are to be sorted in non-decreasing order.

 Given a sequence of „n‟ elements a[1],…,a[n] the general idea is to imagine then

split into 2 sets a[1],…..,a[n/2] and a[[n/2]+1],….a[n].

 Each set is individually sorted, and the resulting sorted sequences are merged to

produce a single sorted sequence of „n‟ elements.

 Thus, we have another ideal example of the divide-and-conquer strategy in which

the splitting is into 2 equal-sized sets & the combining operation is the merging of

2 sorted sets into one.

Algorithm For Merge Sort:

1. Algorithm MergeSort(low,high)

2. //a[low:high] is a global array to be sorted

3. //Small(P) is true if there is only one element

4. //to sort. In this case the list is already sorted.

5. {

6. if (low<high) then //if there are more than one element

7. {

8. //Divide P into subproblems

9. //find where to split the set

10. mid = [(low+high)/2];

11. //solve the subproblems.

12. mergesort (low,mid);

13. mergesort(mid+1,high);

Design and Analysis of Algorithm

9

14. //combine the solutions .

15. merge(low,mid,high);

16. }

17. }

Algorithm: Merging 2 sorted subarrays using auxiliary storage.

1. Algorithm merge(low,mid,high)

2. //a[low:high] is a global array containing

3. //two sorted subsets in a[low:mid]

4. //and in a[mid+1:high].The goal is to merge these 2 sets into

5. //a single set residing in a[low:high].b[] is an auxiliary global array.

6. {

7. h=low; I=low; j=mid+1;

8. while ((h<=mid) and (j<=high)) do

9. {

10. if (a[h]<=a[j]) then

11. {

12. b[I]=a[h];

13. h = h+1;

14. }

15. else

16. {

17. b[I]= a[j];

18. j=j+1;

19. }

20. I=I+1;

21. }

22. if (h>mid) then

23. for k=j to high do

24. {

25. b[I]=a[k];

26. I=I+1;

27. }

28. else

29. for k=h to mid do

30. {

31. b[I]=a[k];

32. I=I+1;

33. }

34. for k=low to high do a[k] = b[k];

35. }

 Consider the array of 10 elements a[1:10] =(310, 285, 179, 652, 351, 423, 861,

254, 450, 520)

Design and Analysis of Algorithm

10

 Algorithm Mergesort begins by splitting a[] into 2 sub arrays each of size five

(a[1:5] and a[6:10]).

 The elements in a[1:5] are then split into 2 sub arrays of size 3 (a[1:3]) and

2(a[4:5])

 Then the items in a a[1:3] are split into sub arrays of size 2 a[1:2] & one(a[3:3])

 The 2 values in a[1:2} are split to find time into one-element sub arrays, and now

the merging begins.

 (310| 285| 179| 652, 351| 423, 861, 254, 450, 520)

 Where vertical bars indicate the boundaries of sub arrays.

Elements a[I] and a[2] are merged to yield,

 (285, 310|179|652, 351| 423, 861, 254, 450, 520)

 Then a[3] is merged with a[1:2] and

 (179, 285, 310| 652, 351| 423, 861, 254, 450, 520)

 Next, elements a[4] & a[5] are merged.

 (179, 285, 310| 351, 652 | 423, 861, 254, 450, 520)

 And then a[1:3] & a[4:5]

 (179, 285, 310, 351, 652| 423, 861, 254, 450, 520)

 Repeated recursive calls are invoked producing the following sub arrays.

 (179, 285, 310, 351, 652| 423| 861| 254| 450, 520)

 Elements a[6] &a[7] are merged.

Then a[8] is merged with a[6:7]

 (179, 285, 310, 351, 652| 254,423, 861| 450, 520)

 Next a[9] &a[10] are merged, and then a[6:8] & a[9:10]

 (179, 285, 310, 351, 652| 254, 423, 450, 520, 861)

 At this point there are 2 sorted sub arrays & the final merge produces the fully

sorted result.

 (179, 254, 285, 310, 351, 423, 450, 520, 652, 861)

 If the time for the merging operations is proportional to „n‟, then the computing

time for merge sort is described by the recurrence relation.

Design and Analysis of Algorithm

11

 T(n) = { a n=1,‟a‟ a constant

 2T(n/2)+cn n>1,‟c‟ a constant.

 When „n‟ is a power of 2, n= 2^k, we can solve this equation by successive

substitution.

 T(n) =2(2T(n/4) +cn/2) +cn

 = 4T(n/4)+2cn

 = 4(2T(n/8)+cn/4)+2cn

 *

 *

 = 2
k

T(1)+kCn.

 = an + cn log n.

 It is easy to see that if s
k
<n<=2

k+1
, then T(n)<=T(2

k+1
). Therefore,

 T(n)=O(n log n)

QUICK SORT

 The divide-and-conquer approach can be used to arrive at an efficient sorting

method different from merge sort.

 In merge sort, the file a[1:n] was divided at its midpoint into sub arrays which

were independently sorted & later merged.

 In Quick sort, the division into 2 sub arrays is made so that the sorted sub arrays

do not need to be merged later.

 This is accomplished by rearranging the elements in a[1:n] such that a[I]<=a[j] for

all I between 1 & n and all j between (m+1) & n for some m, 1<=m<=n.

 Thus the elements in a[1:m] & a[m+1:n] can be independently sorted.

 No merge is needed. This rearranging is referred to as partitioning.

 Function partition of Algorithm accomplishes an in-place partitioning of the

elements of a[m:p-1]

 It is assumed that a[p]>=a[m] and that a[m] is the partitioning element. If m=1 &

p-1=n, then a[n+1] must be defined and must be greater than or equal to all

elements in a[1:n]

Design and Analysis of Algorithm

12

 The assumption that a[m] is the partition element is merely for convenience, other

choices for the partitioning element than the first item in the set are better in

practice.

 The function interchange (a,I,j) exchanges a[I] with a[j].

Algorithm: Partition the array a[m:p-1] about a[m]

1. Algorithm Partition(a,m,p)

2. //within a[m],a[m+1],…..,a[p-1] the elements

3. // are rearranged in such a manner that if

4. //initially t=a[m],then after completion

5. //a[q]=t for some q between m and

6. //p-1,a[k]<=t for m<=k<q, and

7. //a[k]>=t for q<k<p. q is returned

8. //Set a[p]=infinite.

9. {

10. v=a[m];I=m;j=p;

11. repeat

12. {

13. repeat

14. I=I+1;

15. until(a[I]>=v);

16. repeat

17. j=j-1;

18. until(a[j]<=v);

19. if (I<j) then interchange(a,i.j);

20. }until(I>=j);

21. a[m]=a[j]; a[j]=v;

22. retun j;

23. }

1. Algorithm Interchange(a,I,j)

2. //Exchange a[I] with a[j]

3. {

4. p=a[I];

5. a[I]=a[j];

6. a[j]=p;

7. }

Algorithm: Sorting by Partitioning

1. Algorithm Quicksort(p,q)

2. //Sort the elements a[p],….a[q] which resides

3. //is the global array a[1:n] into ascending

Design and Analysis of Algorithm

13

4. //order; a[n+1] is considered to be defined

5. // and must be >= all the elements in a[1:n]

6. {

7. if(p<q) then // If there are more than one element

8. {

9. // divide p into 2 subproblems

10. j=partition(a,p,q+1);

11. //‟j‟ is the position of the partitioning element.

12. //solve the subproblems.

13. quicksort(p,j-1);

14. quicksort(j+1,q);

15. //There is no need for combining solution.

16. }

17. }

STRASSEN’S MATRIX MULTIPLICAION

 Let A and B be the 2 n*n Matrix. The product matrix C=AB is calculated by

using the formula,

C (i ,j)= A(i,k) B(k,j) for all „i‟ and and j between 1 and n.

 The time complexity for the matrix Multiplication is O(n^3).

 Divide and conquer method suggest another way to compute the product of n*n

matrix.

 We assume that N is a power of 2 .In the case N is not a power of 2 ,then enough

rows and columns of zero can be added to both A and B .SO that the resulting

dimension are the powers of two.

 If n=2 then the following formula as a computed using a matrix multiplication

operation for the elements of A & B.

 If n>2,Then the elements are partitioned into sub matrix n/2*n/2..since „n‟ is a

power of 2 these product can be recursively computed using the same formula

.This Algorithm will continue applying itself to smaller sub matrix until „N”

become suitable small(n=2) so that the product is computed directly .

Design and Analysis of Algorithm

14

 The formula are

A11 A12 B11 B12 C11 C12

 * =

A21 A21 B21 B22 C21 C22

C11 = A11 B11 + A12 B21

C12 = A11 B12 + A12 B22

C21 = A21 B11 + A22 B21

C22 = A21 B12 + A22 B22

For EX:

 2 2 2 2 1 1 1 1

 4 * 4 = 2 2 2 2 1 1 1 1

 2 2 2 2 * 1 1 1 1

 2 2 2 2 1 1 1 1

The Divide and conquer method

 2 2 2 2 1 1 1 1 4 4 4 4

 2 2 2 2 * 1 1 1 1 = 4 4 4 4

 2 2 2 2 1 1 1 1 4 4 4 4

 2 2 2 2 1 1 1 1 4 4 4 4

 To compute AB using the equation we need to perform 8 multiplication of

n/2*n/2 matrix and from 4 addition of n/2*n/2 matrix.

 Ci,j are computed using the formula in equation 4

 As can be sum P, Q, R, S, T, U, and V can be computed using 7 Matrix

multiplication and 10 addition or subtraction.

 The Cij are required addition 8 addition or subtraction.

Design and Analysis of Algorithm

15

Example

4 4 4 4

 *

4 4 4 4

P=(4*4)+(4+4)=64

Q=(4+4)4=32

R=4(4-4)=0

S=4(4-4)=0

T=(4+4)4=32

U=(4-4)(4+4)=0

V=(4-4)(4+4)=0

C11=(64+0-32+0)=32

C12=0+32=32

C21=32+0=32

C22=64+0-32+0=32

So the answer c(i,j) is 32 32

 32 32

since n/2 n/2 &matrix can be can be added in Cn for some constant C, The overall

computing time T(n) of the resulting divide and conquer algorithm is given by the

sequence.

T(n)= b n<=2 a &b are

 8T(n/2)+cn
2

 n>2 constant

That is T(n)=O(n
log8

)=O(n
3
)

* Matrix multiplication are more expensive then the matrix addition O(n^3).We can

attempt to reformulate the equation for Cij so as to have fewer multiplication and

possibly more addition .

 Stressen has discovered a way to compute the Cij of equation (2) using only 7

multiplication and 18 addition or subtraction.

 Strassen‟s formula are

P= (A11+A12)(B11+B22)

Q= (A12+A22)B11

R= A11(B12-B22)

S= A22(B21-B11)

T= (A11+A12)B22

U= (A21-A11)(B11+B12)

V= (A12-A22)(B21+B22)

Design and Analysis of Algorithm

16

C11=P+S-T+V

C!2=R+t

C21=Q+T

C22=P+R-Q+V

 Time Complexity

T(n)= b n<=2 a &b are

 7T(n/2)+an
2
 n>2 constant

That is T(n)= O(n
log7

)=O(n
2.81

)

Design and Analysis of Algorithm

17

GREEDY METHOD

 Greedy method is the most straightforward designed technique.

 As the name suggest they are short sighted in their approach taking decision on

the basis of the information immediately at the hand without worrying about the

effect these decision may have in the future.

DEFINITION:

 A problem with N inputs will have some constraints .any subsets that satisfy these

constraints are called a feasible solution.

 A feasible solution that either maximize can minimize a given objectives function

is called an optimal solution.

Control algorithm for Greedy Method:

1.Algorithm Greedy (a,n)

2.//a[1:n] contain the „n‟ inputs

3. {

4.solution =0;//Initialise the solution.

5.For i=1 to n do

6.{

7.x=select(a);

8.if(feasible(solution,x))then

9.solution=union(solution,x);

10.}

11.return solution;

12.}

* The function select an input from a[] and removes it. The select input value is assigned

to X.

 Feasible is a Boolean value function that determines whether X can be included

into the solution vector.

 The function Union combines X with The solution and updates the objective

function.

 The function Greedy describes the essential way that a greedy algorithm will once

a particular problem is chosen ands the function subset, feasible & union are

properly implemented.

Example

 Suppose we have in a country the following coins are available :

Design and Analysis of Algorithm

18

Dollars(100 cents)

Quarters(25 cents)

Dimes(10 cents)

Nickel(5 Cents)

Pennies(1 cent)

 Our aim is paying a given amount to a customer using the smallest possible

number of coins.

 For example if we must pay 276 cents possible solution then,

 1 doll+7 q+ 1 pen9 coins

 2 doll +3Q +1 pen6 coins

 2 doll+7dim+1 nic +1 pen11 coins.

KNAPSACK PROBLEM

 we are given n objects and knapsack or bag with capacity M object I has a

weight Wi where I varies from 1 to N.

 The problem is we have to fill the bag with the help of N objects and the resulting

profit has to be maximum.

 Formally the problem can be stated as

Maximize xipi subject to XiWi<=M

Where Xi is the fraction of object and it lies between 0 to 1.

 There are so many ways to solve this problem, which will give many feasible

solution for which we have to find the optimal solution.

 But in this algorithm, it will generate only one solution which is going to be

feasible as well as optimal.

 First, we find the profit & weight rates of each and every object and sort it

according to the descending order of the ratios.

 Select an object with highest p/w ratio and check whether its height is lesser than

the capacity of the bag.

 If so place 1 unit of the first object and decrement .the capacity of the bag by the

weight of the object you have placed.

Design and Analysis of Algorithm

19

 Repeat the above steps until the capacity of the bag becomes less than the weight

of the object you have selected .in this case place a fraction of the object and

come out of the loop.

 Whenever you selected.

ALGORITHM:

1.Algorityhm Greedy knapsack (m,n)

2//P[1:n] and the w[1:n]contain the profit

3.// & weight res‟.of the n object ordered.

4.//such that p[i]/w[i] >=p[i+1]/W[i+1]

5.//n is the Knapsack size and x[1:n] is the solution vertex.

6.{

7.for I=1 to n do a[I]=0.0;

8.U=n;

9.For I=1 to n do

10.{

11.if (w[i]>u)then break;

13.x[i]=1.0;U=U-w[i]

14.}

15.if(i<=n)then x[i]=U/w[i];

16.}

Example:

Capacity=20

N=3 ,M=20

Wi=18,15,10

Pi=25,24,15

Pi/Wi=25/18=1.36,24/15=1.6,15/10=1.5

Descending Order Pi/Wi1.6 1.5 1.36

Pi = 24 15 25

Wi = 15 10 18

 Xi = 1 5/10 0

PiXi=1*24+0.5*1531.5

The optimal solution is 31.5

X1 X2 X3 WiXi PiXi
½ 1/3 ¼ 16.6 24.25

1 2/5 0 20 18.2

0 2/3 1 20 31

Design and Analysis of Algorithm

20

0 1 ½ 20 31.5

Of these feasible solution Solution 4 yield the Max profit .As we shall soon see this

solution is optimal for the given problem instance.

JOB SCHEDULING WITH DEAD LINES

The problem is the number of jobs, their profit and deadlines will be given and we have

to find a sequence of job, which will be completed within its deadlines, and it should

yield a maximum profit.

Points To remember:

 To complete a job, one has to process the job or a action for one unit of time.

 Only one machine is available for processing jobs.

 A feasible solution for this problem is a subset of j of jobs such that each job in

this subject can be completed by this deadline.

 If we select a job at that time ,

Since one job can be processed in a single m/c. The other job has to be in its waiting

state until the job is completed and the machine becomes free.

So the waiting time and the processing time should be less than or equal to the dead

line of the job.

ALGORITHM:

High level description of job sequencing algorithm

Algorithm GREEDY _JOB(D, J, n)

/ /J is an output variable. It is the set of jobs to be completed by their deadlines

{

 J={1}

 for i = 2 to n do

 {

 if (all jobs in J U { i} can be completed by their deadlines) thenJ=- J U {i};

 }

 }

Greedy algorithm for sequencing unit time jobs with deadlines and profits

Algorithm JS(d,j,n)

//The job are ordered such that p[1]>p[2]…>p[n]

//j[i] is the ith job in the optimal solution

// Also at terminal d [J[i]<=d[J {i+1],1<i<k

 {

 d[0]= J[0]=0;

Design and Analysis of Algorithm

21

J[1]=1;

k=1;

For I =1 to n do

{ // consider jobs in non increasing order of P[I];find the position for I and check

feasibility insertion

r=k;

while((d[J[r]]>d[i])and (d[J[r]]! = r)do r =r-1;

if (d[J[r]]<d[I])and (d[I]>r))then

{

for q=k to (r+1) step –1 do J [q+1]=j[q]

J[r+1]=i;

K=k+1;

}

}

return k;

}

Example :

1. n=5 (P1,P2,…P5)=(20,15,10,5,1)

 (d1,d2….d3)=(2,2,1,3,3)

Feasible solution Processing Sequence Value

(1) (1) 20

(2) (2) 15

(3) (3) 10

(4) (4) 5

(5) (5) 1

(1,2) (2,1) 35

(1,3) (3,1) 30

(1,4) (1,4) 25

(1,5) (1,5) 21

(2,3) (3,2) 25

(2,4) (2,4) 20

(2,5) (2,5) 16

(1,2,3) (3,2,1) 45

(1,2,4) (1,2,4) 40

The Solution 13 is optimal

2. n=4 (P1,P2,…P4)=(100,10,15,27)

 (d1,d2….d4)=(2,1,2,1)

Design and Analysis of Algorithm

22

Feasible solution Processing Sequence Value

(1,2) (2,1) 110

(1,3) (1,3) 115

(1,4) (4,1) 127

(2,3) (9,3) 25

(2,4) (4,2) 37

(3,4) (4,3) 42

(1) (1) 100

(2) (2) 10

(3) (3) 15

(4) (4) 27

The solution 3 is optimal.

MINIMUM SPANNING TREE

 Let G(V,E) be an undirected connected graph with vertices „v‟ and edge „E‟.

 A sub-graph t=(V,E‟) of the G is a Spanning tree of G iff „t‟ is a tree.3

 The problem is to generate a graph G‟= (V,E) where „E‟ is the subset of E,G‟ is a

Minimum spanning tree.

 Each and every edge will contain the given non-negative length .connect all the

nodes with edge present in set E‟ and weight has to be minimum.

NOTE:

 We have to visit all the nodes.

 The subset tree (i.e) any connected graph with „N‟ vertices must have at least N-1

edges and also it does not form a cycle.

Definition:

 A spanning tree of a graph is an undirected tree consisting of only those edge that

are necessary to connect all the vertices in the original graph.

 A Spanning tree has a property that for any pair of vertices there exist only one

path between them and the insertion of an edge to a spanning tree form a unique

cycle.

Application of the spanning tree:

1. Analysis of electrical circuit.

2. Shortest route problems.

Minimum cost spanning tree:

 The cost of a spanning tree is the sum of cost of the edges in that trees.

Design and Analysis of Algorithm

23

 There are 2 method to determine a minimum cost spanning tree are

1. Kruskal‟s Algorithm

2. Prom‟s Algorithm.

KRUSKAL’S ALGORITHM:

 In kruskal's algorithm the selection function chooses edges in increasing order of

length without worrying too much about their connection to previously chosen edges,

except that never to form a cycle. The result is a forest of trees that grows until all the

trees in a forest (all the components) merge in a single tree.

 In this algorithm, a minimum cost-spanning tree „T‟ is built edge by edge.

 Edge are considered for inclusion in „T‟ in increasing order of their cost.

 An edge is included in „T‟ if it doesn‟t form a cycle with edge already in T.

 To find the minimum cost spanning tree the edge are inserted to tree in increasing

order of their cost

Algorithm:

Algorithm kruskal(E,cost,n,t)

//Eset of edges in G has „n‟ vertices.

//cost[u,v]cost of edge (u,v).tset of edge in minimum cost spanning tree

// the first cost is returned.

{

for i=1 to n do parent[I]=-1;

I=0;mincost=0.0;

While((I<n-1)and (heap not empty)) do

{

j=find(n);

k=find(v);

if(j not equal k) than

{

i=i+1

t[i,1]=u;

t[i,2]=v;

mincost=mincost+cost[u,v];

union(j,k);

 }

 }

if(i notequal n-1) then write(“No spanning tree”)

else return minimum cost;

Design and Analysis of Algorithm

24

}

Analysis

 The time complexity of minimum cost spanning tree algorithm in worst case is

O(|E|log|E|),

where E is the edge set of G.

Example: Step by Step operation of Kurskal algorithm.

Step 1. In the graph, the Edge(g, h) is shortest. Either vertex g or vertex h could be

representative. Lets choose vertex g arbitrarily.

Step 2. The edge (c, i) creates the second tree. Choose vertex c as representative for

second tree.

Step 3. Edge (g, g) is the next shortest edge. Add this edge and choose vertex g as

representative.

Step 4. Edge (a, b) creates a third tree.

Design and Analysis of Algorithm

25

Step 5. Add edge (c, f) and merge two trees. Vertex c is chosen as the representative.

Step 6. Edge (g, i) is the next next cheapest, but if we add this edge a cycle would be

created. Vertex c is the representative of both.

Step 7. Instead, add edge (c, d).

Step 8. If we add edge (h, i), edge(h, i) would make a cycle.

Design and Analysis of Algorithm

26

Step 9. Instead of adding edge (h, i) add edge (a, h).

Step 10. Again, if we add edge (b, c), it would create a cycle. Add edge (d, e) instead to

complete the spanning tree. In this spanning tree all trees joined and vertex c is a sole

representative.

PRIM'S ALGORITHM

Start from an arbitrary vertex (root). At each stage, add a new branch (edge) to the

tree already constructed; the algorithm halts when all the vertices in the graph have been

reached.

Design and Analysis of Algorithm

27

Algorithm prims(e,cost,n,t)

{

 Let (k,l) be an edge of minimum cost in E;

 Mincost :=cost[k,l];

 T[1,1]:=k; t[1,2]:=l;

 For I:=1 to n do

 If (cost[i,l]<cost[i,k]) then near[i]:=l;

 Else near[i]:=k;

 Near[k]:=near[l]:=0;

 For i:=2 to n-1 do

 {

 Let j be an index such that near[j]≠0 and

 Cost[j,near[j]] is minimum;

 T[i,1]:=j; t[i,2]:=near[j];

 Mincost:=mincost+ Cost[j,near[j]];

 Near[j]:=0;

 For k:=0 to n do

 If near((near[k]≠0) and (Cost[k,near[k]]>cost[k,j])) then

 Near[k]:=j;

 }

 Return mincost;

}

 The prims algorithm will start with a tree that includes only a minimum cost edge

of G.

 Then, edges are added to the tree one by one. the next edge (i,j) to be added in

such that I is a vertex included in the tree, j is a vertex not yet included, and cost

of (i,j), cost[i,j] is minimum among all the edges.

 The working of prims will be explained by following diagram

 Step 1: Step 2:

Design and Analysis of Algorithm

28

 Step 3: Step 4:

 Step 5: Step 6:

SINGLE SOURCE SHORTEST PATH

Single-source shortest path:

Graphs can be used to represent the highway structure of a state or country with

vertices representing cities and edges representing sections of highway. The edges can

then be assigned weights which may be either the distance between the two cities

connected by the edge or the average time to drive along that section of highway. A

motorist wishing to drive from city A to B would be interested in answers to the

following questions:

1. Is there a path from A to B?

2. If there is more than one path from A to B? Which is the shortest path?

Design and Analysis of Algorithm

29

 The problems defined by these questions are special case of the path problem we study

in this section. The length of a path is now defined to be the sum of the weights of the

edges on that path. The starting vertex of the path is referred to as the source and the last

vertex the destination. The graphs are digraphs representing streets. Consider a digraph

G=(V,E), with the distance to be traveled as weights on the edges. The problem is to

determine the shortest path from v0 to all the remaining vertices of G. It is assumed that

all the weights associated with the edges are positive. The shortest path between v0 and

some other node v is an ordering among a subset of the edges. Hence this problem fits the

ordering paradigm.

Example:

Consider the digraph of fig 7-1. Let the numbers on the edges be the costs of travelling

along that route. If a person is interested travel from v1 to v2, then he encounters many

paths. Some of them are

1. v1 v2 = 50 units

2. v1 v3 v4 v2 = 10+15+20=45 units

3. v1 v5 v4 v2 = 45+30+20= 95 units

4. v1 v3 v4 v5 v4 v2 = 10+15+35+30+20=110 units

The cheapest path among these is the path along v1 v3 v4v2. The cost of the path

is 10+15+20 = 45 units. Even though there are three edges on this path, it is cheaper than

travelling along the path connecting v1 and v2 directly i.e., the path v1 v2 that costs 50

units. One can also notice that, it is not possible to travel to v6 from any other node.

To formulate a greedy based algorithm to generate the cheapest paths, we must conceive

a multistage solution to the problem and also of an optimization measure. One possibility

is to build the shortest paths one by one. As an optimization measure we can use the sum

of the lengths of all paths so far generated. For this measure to be minimized, each

individual path must be of minimum length. If we have already constructed i shortest

paths, then using this optimization measure, the next path to be constructed should be the

next shortest minimum length path. The greedy way to generate these paths in non-

Design and Analysis of Algorithm

30

decreasing order of path length. First, a shortest path to the nearest vertex is generated.

Then a shortest path to the second nearest vertex is generated, and so on.

A much simpler method would be to solve it using matrix representation. The steps that

should be followed is as follows,

Step 1: find the adjacency matrix for the given graph. The adjacency matrix for fig 7.1 is

given below

 V1 V2 V3 V4 V5 V6

V1 - 50 10 Inf 45 Inf

V2 Inf - 15 Inf 10 Inf

V3 20 Inf - 15 inf Inf

V4 Inf 20 Inf - 35 Inf

V5 Inf Inf Inf 30 - Inf

V6 Inf Inf Inf 3 Inf -

Step 2: consider v1 to be the source and choose the minimum entry in the row v1. In the

above table the minimum in row v1 is 10.

Step 3: find out the column in which the minimum is present, for the above example it is

column v3. Hence, this is the node that has to be next visited.

Step 4: compute a matrix by eliminating v1 and v3 columns. Initially retain only row v1.

The second row is computed by adding 10 to all values of row v3.

The resulting matrix is

 V2 V4 V5 V6

V1 Vw 50 Inf 45 Inf

V1 V3 Vw 10+inf 10+15 10+inf 10+inf

Design and Analysis of Algorithm

31

Minimum 50 25 45 inf

Step 5: find the minimum in each column. Now select the minimum from the resulting

row. In the above example the minimum is 25. Repeat step 3 followed by step 4 till all

vertices are covered or single column is left.

The solution for the fig 7.1 can be continued as follows

 V2 V5 V6

V1 Vw 50 45 Inf

V1 V3V4 Vw 25+20 25+35 25+inf

Minimum 45 45 inf

 V5 V6

V1Vw 45 Inf

V1V3V4V2Vw 45+10 45+inf

Minimum 45 inf

 V6

V1 Vw Inf

V1V3V4 V2V5Vw 45+inf

Minimum inf

Finally the cheapest path from v1 to all other vertices is given by

V1 V3V4V2V5.

