
UNIT -3Syllabus:

Selection Statements – if and switch statements, Repetitive statements – while, for, do-

while statements, C Programming examples, other statements related to looping – break,

continue, goto, C Programming examples, Arrays- Basic concepts, one-dimensional

arrays, two-dimensional arrays, multidimensional arrays, C Programming examples.

1. Selection Staements

1.1. if statement

The if statement checks whether the text expression inside parenthesis () is true or not. If

the test expression is true, statement/s inside the body of if statement is executed but if test is

false, statement/s inside body of if is ignored.

Syntax is,

if (test_expression)

{

 Staements to be executed if test expression is true;;

}

Flow of if statement

Example :

#include<stdio.h>

#include<conio.h>

void main()

{

intnum;;

printf(“\n enter a number to check : ”);

scanf(“%d”,&num);

if(num<0) /* checking whether number is less than 0 or not. */

{

printf(“\n Number =%d”,num);

}

 /*If test condition is true, statement above will be executed, otherwise it will not

be executed */

printf(“The if statement in C programing is easy “);

getch();;

}

Output 1

Enter a number to check.

-2

Number = -2

The if statement in C programming is easy.

When user enters -2 then, the test expression (num<0) becomes true.

Hence, Number = -2 is displayed in the screen.

Output 2
Enter a number to check.

5

The if statement in C programming is easy.

When the user enters 5 then, the test expression (num<0) becomes false. So, the

statement/s inside body of if is skipped and only the statement below it is executed.

1.2. if – else statement

The if...else statement is used if the programmer wants to execute some

statement/s when the test expression is true and execute some other statement/s if the

test expression is false.

Syntax is,

 if (test expression)

 {

 statements to be executed if test expression is true;

 }

 else

 {

 statements to be executed if test expression is false;

 }

Flow chart of if-else statement

Example:

Write a C program to check whether a number entered by user is even or odd

#include<stdio.h>

int main(){

intnum;

printf("Enter a number you want to check.\n");

scanf("%d",&num);

if((num%2)==0)//checking whether remainder is 0 or not.

printf("%d is even.",num);

else

printf("%d is odd.",num);

return0;

}

Output 1

Enter a number you want to check.

25

25 is odd.

Output 2

Enter a number you want to check.

2

2 is even.

1.3. Nested if –else statement (if – else if)

The nested if...else statement is used when program requires more than one test

expression.

Syntax is

if (test expression1)

{

statement/s to be executed if test expression1 is true;

}

else if(test expression2)

{

statement/s to be executed if test expression1 is false and 2 is

true;

}

else if (test expression 3)

{

statement/s to be executed if text expression1 and 2 are false and 3

is true;

}

 .

 .

 .

else

{

statements to be executed if all test expressions are false;

}

How nested if...else works?

The nested if...else statement has more than one test expression. If the first test

expression is true, it executes the code inside the braces{ } just below it. But if the first

test expression is false, it checks the second test expression. If the second test expression

is true, it executes the statement/s inside the braces{ } just below it. This process

continues. If all the test expression are false, code/s inside else is executed and the

control of program jumps below the nested if...else

The ANSI standard specifies that 15 levels of nesting may be continued.

Example:

Write a C program to relate two integers entered by user using = or > or < sign.

#include<stdio.h>

int main(){

int numb1, numb2;

printf("Enter two integers to check\n");

scanf("%d %d",&numb1,&numb2);

if(numb1==numb2)//checking whether two integers are equal.

printf("Result: %d = %d",numb1,numb2);

else

if(numb1>numb2)//checking whether numb1 is greater than numb2.

printf("Result: %d > %d",numb1,numb2);

else

printf("Result: %d > %d",numb2,numb1);

return0;

}

Output 1

Enter two integers to check.

5

3

Result: 5 > 3

Output 2

Enter two integers to check.

-4

-4

Result: -4 = -4

1.4. switch Statement

Decision making are needed when, the program encounters the situation to choose

a particular statement among many statements. If a programmer has to choose one block

of statement among many alternatives, nested if...else can be used but, this makes

programming logic complex. This type of problem can be handled in C programming

using switch statement.

Syntax of switch statement is,

switch (n)

{

case constant1:

code/s to be executed if n equals to constant1;

break;

caseconstant2:

code/s to be executed if n equals to constant2;

break;

 .

 .

 .

default:

code/s to be executed if n doesn't match to any cases;

}

 The value of n is either an integer or a character in above syntax. If the value

of n matches constant in case, the relevant codes are executed and control moves out of

the switch statement. If the ndoesn't matches any of the constant in case, then the default

codes are executed and control moves out of switch statement.

Example:

Write a program that asks user an arithmetic operator('+','-','*' or '/') and two

operands and perform the corresponding calculation on the operands.

/* C program to demonstrate the working of switch...case statement */

/* C Program to create a simple calculator for addition, subtraction,

multiplication and division */

include <stdio.h>

int main(){

char o;

float num1,num2;

printf("Select an operator either + or - or * or / \n");

scanf("%c",&o);

printf("Enter two operands: ");

scanf("%f%f",&num1,&num2);

switch(o){

case'+':

printf("%.1f + %.1f = %.1f",num1, num2, num1+num2);

break;

case'-':

printf("%.1f - %.1f = %.1f",num1, num2, num1-num2);

break;

case'*':

printf("%.1f * %.1f = %.1f",num1, num2, num1*num2);

break;

case'/':

printf("%.1f / %.1f = %.1f",num1, num2, num1/num2);

break;

default:

/* If operator is other than +, -, * or /, error message is shown */

printf("Error! operator is not correct");

break;

}

return0;

}

Output
Enter operator either + or - or * or /

*

Enter two operands: 2.3

4.5

2.3 * 4.5 = 10.3

 The break statement at the end of each case cause switch statement to exit. If

break statement is not used, all statements below that case statement are also executed.

2. Repetitive statements (Iterative statements)

There may be a situation, when you need to execute a block of code several number of

times. In general, statements are executed sequentially: The first statement in a function is

executed first, followed by the second, and so on.Programming languages provide various

control structures that allow for more complicated execution paths.A loop statement or

repetitive statement allows us to execute a statement or group of statements multiple times.

C programming language provides the following types of loop to handle looping requirements.

Click the following links to check their detail.

Loop Type Description

while loop

Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the

loop body.

for loop

Execute a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

do...while loop

Like a while statement, except that it tests the condition at the

end of the loop body

nested loops

You can use one or more loop inside any another while, for or

do..while loop.

2.1. while loop

The while loop checks whether the test expression is true or not. If it is true,

code/s inside the body of while loop is executed,that is, code/s inside the braces { } are

executed. Then again the test expression is checked whether test expression is true or

not. This process continues until the test expression becomes false.

Syntax of while loop,

while (test expression)

{

statement/s to be executed.

}

http://www.tutorialspoint.com/cprogramming/c_while_loop.htm
http://www.tutorialspoint.com/cprogramming/c_for_loop.htm
http://www.tutorialspoint.com/cprogramming/c_do_while_loop.htm
http://www.tutorialspoint.com/cprogramming/c_nested_loops.htm

Flow of while loop,

Example :

Write a C program to find the factorial of a number, where the number is entered

by user. (Hints: factorial of n = 1*2*3*...*n

/*C program to demonstrate the working of while loop*/

#include<stdio.h>

int main(){

intnumber,factorial;

printf("Enter a number.\n");

scanf("%d",&number);

factorial=1;

while(number>0){/* while loop continues util test condition number>0 is true */

factorial=factorial*number;

--number;

}

printf("Factorial=%d",factorial);

return0;

}

Output

Enter a number.

5

Factorial=120

2.2. do-while loop

In C, do...while loop is very similar to while loop. Only difference between these

two loops is that, in while loops, test expression is checked at first but, in do...while

loop code is executed at first then the condition is checked. So, the code are executed at

least once in do...while loops.

Syntax of do-while loop is,

do

{

some code/s;

}while (test expression);

 At first codes inside body of do is executed. Then, the test expression is

checked. If it is true, code/s inside body of do are executed again and the process

continues until test expression becomes false(zero).

Notice, there is semicolon in the end of while (); in do...while loop.

Example

Write a C program to add all the numbers entered by a user until user enters 0.

/*C program to demonstrate the working of do...while statement*/

#include<stdio.h>

int main(){

int sum=0,num;

do/* Codes inside the body of do...while loops are at least executed once. */

{

printf("Enter a number\n");

scanf("%d",&num);

sum+=num;

}

while(num!=0);

printf("sum=%d",sum);

return0;

}

Output
Enter a number

3

Enter a number

-2

Enter a number

0

sum=1

 In this C program, user is asked a number and it is added with sum. Then, only

the test condition in the do...while loop is checked. If the test condition is

true,i.e, num is not equal to 0, the body of do...while loop is again executed

until num equals to zero.

2.3. for loop

For loop is also used for the similar purpose like while & do-while. It has three

statements. (i) initialization statements (ii) condition statements (iii) update statements.

The initialization statement is executed only once at the beginning of the for loop.

Then the test expression is checked by the program. If the test expression is false, for

loop is terminated. But if test expression is true then the code/s inside body of for loop is

executed and then update expression is updated. This process repeats until test

expression is false.

Syntax of for loop is,

for(initialization statement; test expression; update statement)

{

code/s to be executed;

}

Flow of for loop is,

Example,

Write a program to find the sum of first n natural numbers where n is entered by

user. Note: 1,2,3... are called natural numbers.

#include<stdio.h>

int main(){

int n, count, sum=0;

printf("Enter the value of n.\n");

scanf("%d",&n);

for(count=1;count<=n;++count)//for loop terminates if count>n

{

sum+=count;/* this statement is equivalent to sum=sum+count */

}

printf("Sum=%d",sum);

return0;

}

Output
Enter the value of n.

19

Sum=190

 In this program, the user is asked to enter the value of n. Suppose you entered

19 then, count is initialized to 1 at first. Then, the test expression in the for

loop,i.e., (count<= n) becomes true. So, the code in the body of for loop is executed

which makes sum to 1. Then, the expression ++count is executed and again the test

expression is checked, which becomes true. Again, the body of for loop is executed

which makes sum to 3 and this process continues. When count is 20, the test condition

becomes false and the for loop is terminated .

Note: Initial, test and update expressions are separated by semicolon(;).

3. break, continue and goto statements

3.1.break

In C programming, break is used in terminating the loop immediately after it is

encountered. The break statement is used with conditional if statement.

Syntax is,

break;

The break statement can be used in terminating all three loops for, while and do...while

loops.

The figure below explains the working of break statement in all three type of loops.

Example:

Write a C program to find average of maximum of n positive numbers entered by

user. But, if the input is negative, display the average(excluding the average of

negative input) and end the program.

/* C program to demonstrate the working of break statement by terminating a loop, if

user inputs negative number*/

include <stdio.h>

int main(){

floatnum,average,sum;

inti,n;

printf("Maximum no. of inputs\n");

scanf("%d",&n);

for(i=1;i<=n;++i){

printf("Enter n%d: ",i);

scanf("%f",&num);

if(num<0.0)

break;//for loop breaks if num<0.0

sum=sum+num;

}

average=sum/(i-1);

printf("Average=%.2f",average);

return0;

}

Output
Maximum no. of inputs

4

Enter n1: 1.5

Enter n2: 12.5

Enter n3: 7.2

Enter n4: -1

Average=7.07

 In this program, when the user inputs number less than zero, the loop is

terminated using break statement with executing the statement below it i.e., without

executing sum=sum+num.

 In C, break statements are also used in switch...case statement. You will study it

in C switch… case statement chapter.

3.2. continue Statement

 It is sometimes desirable to skip some statements inside the loop. In such cases,

continue statements are used.

Syntax is,

 continue;

Just like break, continue is also used with conditional if statement.

 For better understanding of how continue statements works in C programming.

Analyze the figure below which bypasses some code/s inside loops using continue

statement.

Example:

Write a C program to find the product of 4 integers entered by a user. If user enters

0 skip it.

//program to demonstrate the working of continue statement in C programming

include <stdio.h>

int main(){

inti,num,product;

for(i=1,product=1;i<=4;++i){

printf("Enter num%d:",i);

scanf("%d",&num);

if(num==0)

continue;/ *In this program, when num equals to zero, it skips the statement

product*=num and continue the loop. */

product*=num;

}

printf("product=%d",product);

return0;

}

Output

Enter num1:3

Enter num2:0

Enter num3:-5

Enter num4:2

product=-30

3.3.goto statement

In C programming, goto statement is used for altering the normal sequence of

program execution by transferring control to some other part of the program.

Syntax of goto statement is,

goto label;

.............

.............

.............

label:

statement;

 In this syntax, label is an identifier. When, the control of program reaches to

goto statement, the control of the program will jump to the label: and executes the code

below it.

Example

/* C program to demonstrate the working of goto statement. */

/* This program calculates the average of numbers entered by user. */

/* If user enters negative number, it ignores that number and

calculates the average of number entered before it.*/

include <stdio.h>

int main(){

floatnum,average,sum;

inti,n;

printf("Maximum no. of inputs: ");

scanf("%d",&n);

for(i=1;i<=n;++i){

printf("Enter n%d: ",i);

scanf("%f",&num);

if(num<0.0)

goto jump; /* control of the program moves to label jump */

sum=sum+num;

}

jump:

average=sum/(i-1);

printf("Average: %.2f",average);

return 0;

}

Output

Maximum no. of inputs: 4

Enter n1: 1.5

Enter n2: 12.5

Enter n3: 7.2

Enter n4: -1

Average: 7.07

 Though goto statement is included in ANSI standard of C, use of goto statement

should be reduced as much as possible in a program.

Reasons to avoid goto statement

 Though, using goto statement give power to jump to any part of program, using

goto statement makes the logic of the program complex and tangled. In modern

programming, goto statement is considered a harmful construct and a bad programming

practice.

The goto statement can be replaced in most of C program with the use of break

and continue statements. In fact, any program in C programming can be perfectly written

without the use of goto statement. All programmer should try to avoid goto statement as

possible as they can.

4. Arrays

In C programming, one of the frequently arising problem is to handle similar

types of data. For example: If the user want to store marks of 100 students. This can be

done by creating 100 variable individually but, this process is rather tedious and

impracticable. These type of problem can be handled in C programming using arrays.

An array is a sequence of data item of homogeneous value(same type).

Arrays are of two types:

1. One-dimensional arrays

2. Multi-dimensional arrays

4.1.Delaration of arrays,

data_typearray_name[array_size];

For example:

int age[5];

 Here, the name of array is age. The size of array is 5,that is, there are 5

items(elements) of array age. All element in an array are of the same type (int, in this

case).

Array elements

Size of array defines the number of elements in an array. Each element of array can be

accessed and used by user according to the need of program. For example:

 int age[5];

Note that, the first element is numbered 0 and so on.

Here, the size of array age is 5 times the size of int because there are 5 elements.

Suppose, the starting address of age[0] is 2120d and the size of int be 4 bytes. Then, the

next address (address of a[1]) will be 2124d, address of a[2] will be 2128d and so on.

4.2.Initialization of one-dimensional array

Arrays can be initialized at declaration time in this source code as:

 int age[5]={2,4,34,3,4};

It is not necessary to define the size of arrays during initialization.

 int age[]={2,4,34,3,4};

In this case, the compiler determines the size of array by calculating the number of

elements of an array.

4.3.Accessing array elements

In C programming, arrays can be accessed and treated like variables in C.

For example:

scanf("%d",&age[2]);

/* statement to insert value in the third element of array age[]. */

scanf("%d",&age[i]);

/* Statement to insert value in (i+1)th element of array age[]. */

/* Because, the first element of array is age[0], second is age[1], ith is age[i -1] and

(i+1)th is age[i]. */

printf("%d",age[0]);

/* statement to print first element of an array. */

printf("%d",age[i]);

/* statement to print (i+1)th element of an array. */

Example :

/* C program to find the sum marks of n students using arrays */

#include <stdio.h>

int main(){

int marks[10],i,n,sum=0;

printf("Enter number of students: ");

scanf("%d",&n);

for(i=0;i<n;++i){

printf("Enter marks of student%d: ",i+1);

scanf("%d",&marks[i]);

sum+=marks[i];

 }

printf("Sum= %d",sum);

return 0;

}

Output

Enter number of students: 3

Enter marks of student1: 12

Enter marks of student2: 31

Enter marks of student3: 2

sum=45

Important thing to remember in C arrays

 Suppose, you declared the array of 10 students. For example: arr[10]. You can

use array members from arr[0] to arr[9]. But, what if you want to use

element arr[10], arr[13] etc. Compiler may not show error using these elements but, may

cause fatal error during program execution.

4.4. Multi-dimensional arrays

C programming language allows programmer to create arrays of arrays known as

multidimensional arrays. For example:

float a[2][6];

Here, a is an array of two dimension, which is an example of multidimensional array.

For better understanding of multidimensional arrays, array elements of above example

can be thinked of as below:

Initialization of multi-dimensional arrays

In C, multidimensional arrays can be initialized in different number of ways.

int c[2][3]={{1,3,0}, {-1,5,9}};

 OR

int c[][3]={{1,3,0}, {-1,5,9}};

 OR

int c[2][3]={1,3,0,-1,5,9};

Initialization Of three-dimensional Array
doublecprogram[3][2][4]={

{{-0.1, 0.22, 0.3, 4.3}, {2.3, 4.7, -0.9, 2}},

 {{0.9, 3.6, 4.5, 4}, {1.2, 2.4, 0.22, -1}},

 {{8.2, 3.12, 34.2, 0.1}, {2.1, 3.2, 4.3, -2.0}}

};

Suppose there is a multidimensional array arr[i][j][k][m]. Then this array can hold

i*j*k*m numbers of data.

Similarly, the array of any dimension can be initialized in C programming.

Example

Write a C program to find sum of two matrix of order 2*2 using multidimensional

arrays where, elements of matrix are entered by user.
#include <stdio.h>

int main(){

float a[2][2], b[2][2], c[2][2];

inti,j;

printf("Enter the elements of 1st matrix\n");

/* Reading two dimensional Array with the help of two for loop. If there was an array

of 'n' dimension, 'n' numbers of loops are needed for inserting data to array.*/

for(i=0;i<2;++i)

for(j=0;j<2;++j){

printf("Enter a%d%d: ",i+1,j+1);

scanf("%f",&a[i][j]);

 }

printf("Enter the elements of 2nd matrix\n");

for(i=0;i<2;++i)

for(j=0;j<2;++j){

printf("Enter b%d%d: ",i+1,j+1);

scanf("%f",&b[i][j]);

 }

for(i=0;i<2;++i)

for(j=0;j<2;++j){

/* Writing the elements of multidimensional array using loop. */

 c[i][j]=a[i][j]+b[i][j]; /* Sum of corresponding elements of two arrays. */

 }

printf("\nSum Of Matrix:");

for(i=0;i<2;++i)

for(j=0;j<2;++j){

printf("%.1f\t",c[i][j]);

if(j==1) /* To display matrix sum in order. */

printf("\n");

 }

return 0;

}

Ouput
Enter the elements of 1st matrix

Enter a11: 2;

Enter a12: 0.5;

Enter a21: -1.1;

Enter a22: 2;

Enter the elements of 2nd matrix

Enter b11: 0.2;

Enter b12: 0;

Enter b21: 0.23;

Enter b22: 23;

Sum Of Matrix:

2.2 0.5

-0.9 25.0

