

Academic Regulations & Detailed I and II-year Syllabus

B. TECH

MECHANICAL ENGINEERING

JBIET Academic Regulations –R25

Applicable to

B.Tech Regular Four-Year Degree Programme

(For the Batches admitted from the Academic Year 2025- 26)

&

B.Tech (Lateral Entry Scheme)

(For the Batches admitted from the Academic Year 2026-27)

J.B. INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS)

Bhaskar Nagar, Yenkapally (V), Moinabad (M), Hyderabad – 500075, Telangana, India

J.B. INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC Autonomous)
JBIET Academic Regulations - R25

Applicable to

B.Tech Regular Four-Year Degree Programme

(For the Batches admitted from the Academic Year 2025- 26)

&

B.Tech (Lateral Entry Scheme)

(For the Batches admitted from the Academic Year 2026- 27)
Offered under Choice Based Credit System (CBCS)

J. B. Institute of Engineering and Technology (hereinafter referred to as JBIET) Academic Regulations JB-R25 are given here under. These regulations approved by the Academic Council shall be in force and applicable from the academic year 2025-26 onwards.

1.0 Under-Graduate Degree Programme in Engineering & Technology

J. B. Institute of Engineering and Technology (JBIET) offers a 4-Year (8 Semesters) Bachelor of Technology (B. Tech) Degree Programme for regular students under Choice Based Credit System (CBCS) in the following branches of Engineering with effect from the academic year 2025-26.

S. No.	Branch Code	Branch Name	
1	01	Civil Engineering (CE)	
2	02	Electrical and Electronics Engineering (EEE)	
3	03	Mechanical Engineering (ME)	
4	04	Electronics and Communication Engineering (ECE)	
5	05	Computer Science and Engineering (CSE)	
6	12	Information Technology (IT)	
7	19	Electronics and Computer Engineering (ECM)	
8	66	Computer Science and Engineering (Artificial Intelligence and Machine Learning)-CSE(AI&ML)	
9	67	Computer Science and Engineering (Data Science)-CSE(DS)	
10	72	Artificial Intelligence and Data Science (AI&DS)	
11	73	Artificial Intelligence and Machine Learning (AI&ML)	

2.0 Eligibility for Admission

- **2.1**. Admission to the undergraduate (UG) programme shall be made either on the basis of the merit rank obtained by the qualified student in entrance test conducted by the Telangana State Government (EAPCET) or the University or on the basis of any other order of merit approved by the College, subject to reservations as prescribed by the government from time to time.
- **2.2**. The medium of instruction for the entire Undergraduate Programme in Engineering &Technology is English only.

3.0 B. Tech Programme Structure

- **3.1.** A student after securing admission shall complete the B.Tech. programme in a minimum period of four academic years and a maximum period of eight academic years starting from the date of commencement of first year first semester, failing which student shall forfeit seat in B.Tech. course. Each student has to secure a minimum of 160 credits out of 164 credits for successful completion of the undergraduate programme and award of the B.Tech. degree.
- **3.2.** UGC/ AICTE/NEP-2020/JNTUH specified definitions/ descriptions are adopted appropriately for various terms and abbreviations used in these academic regulations/ norms.
- **3.2.1 Semester Scheme:** The undergraduate programme is of four academic years and there shall be two semesters in each academic year. There shall be a minimum of 15 weeks of instruction, excluding the midterm and semester-end exams. Around 15 instruction hours, 30 instruction hours and 45 hours of learning need to be followed per one credit of theory course, practical course and project/field-based learning respectively. In each semester, there shall be 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)' under Choice Based Credit System (CBCS). The curriculum/course structure suggested by AICTE/JNTUH is followed as a reference document.

- **3.2.2 Credit Courses:** All courses offered in each semester are to be registered by the student. Against each course in the course structure, the L: T: P: C (lecture periods: tutorial periods: practical periods: credits) pattern has been defined.
 - One credit is allocated for one hour per week in a semester for lecture (L) or Tutorial (T) session.
 - One credit is allocated for two hours per week in a semester for Laboratory/ Practical (P) session.
 - One credit is allocated for three hours per week in a semester for Project/Mini-Project session.
 - For example, a theory course with three credit weightage requires three hours of classroom instruction per week, totalling approximately 45 hours of instruction over the entire semester.
- 3.2.3 Subject Course Classification: All subjects/courses offered for the undergraduate programme in E&T (B.Tech. degree programmes) are broadly classified as follows.

S. No.	Broad Course Classification	• • • • • • • • • • • • • • • • • • •	Course Description				
1		BS – BasicSciences	Includes Mathematics, Physics and Chemistry courses				
2	Foundation Courses (FnC)	ES- Engg. Sciences	Includes Fundamental Engineering Courses				
3	, ,	HS – Humanities and Social sciences	Includes courses related to Humanitie Social Sciences and Management				
4	Core Courses (CoC)	PC– Professional Core	Includes core courses related to the parent branch of Engineering.				
5		PE – Professional Electives	Includes elective courses related to the parent branch of Engineering.				
6	Elective Courses(EIC)	OE – Open Electives	Elective courses which include inter- disciplinary courses or courses in an area outside the parent branch of Engineering.				
5	Project Core	PW- Project Work	B.Tech. Project Work				

6	Other Core Courses (OCC)	Industry Training/ Internship/ Industry Oriented Mini project/ Skill Development Courses	Industry Training/ Internship/ Industry Oriented Mini-Project/Skill Development Courses
7	(000)	Seminar	Seminar based on core contents related to parent branch of Engineering.
8	Skill Development Courses (SDC)		Courses designed to help individuals gain, improve, or refine specific skills
9	Value Added Courses (VAC)		Courses to build professional values, traditional knowledge and sensitization of societal issues

4.0 Mandatory Induction Programme

An induction program of one week duration for the UG students entering the institution, right at the start shall be implemented. Normal classes commence only after the induction programme is conducted. Following activities could be part of the induction programme: i) Physical Activity, ii) Creative Arts, iii) Imparting Universal Human Values, iv) Literary Activities, v) Lectures by Eminent People, vi) Visits to Local Areas and vii) Familiarization to department as well as entire institute and viii) Making students understand Innovative practices at the college premises etc.

5.0 Course Registration

- 5.1 A faculty advisor / mentor shall be assigned to a group of around 20 students, who will advise the students about the undergraduate programme, its course structure and curriculum, choices/options of the courses, based on their competence, progress, prerequisites and interest.
- 5.2 The academic section of the college invites 'registration forms' from students before the beginning of the semester ensuring 'date and time stamping'. The registration requests for semester courses shall be completed two weeks before the commencement of SEEs (Semester End Examinations) of the preceding semester.
- 5.3 A student can apply for registration, only after obtaining the 'written approval' from faculty advisor/mentor, which should be submitted to the college academic section through the Head of the Department. A copy of it shall be retained with the Head of the Department, faculty advisor/ mentor and the student.
- 5.4 A student shall register for all the courses offered in a semester as specified in the course structure.

- **5.5** Course options exercised through registration are final and cannot be changed; further, alternative choices also will not be considered. However, if the course that has already been listed for registration by the Head of the Department in a semester could not be offered due to any inevitable or unexpected reasons, then the student shall be allowed to have alternative choice either for a new course (subject to offering of such a course), or for another existing course. Such alternative arrangements will be made by the Head of the Department, with due notification and time-framed schedule, within a week, but before the commencement of classwork of the semester.
- **5.6** The Head of the Department / Course Coordinator should review vacant slots in the timetable of each section once in every week or fortnight. The vacant slots in the timetable may be allocated to the subject teachers who could not take classes in proportion to the number of weeks completed from the commencement of the semester.
- **5.7** Two faculty members may be allocated for the tutorial session of Mathematics-1 course for better interaction/practice and to minimise the failures in the subject.
- **5.8 Professional Electives:** The students have to choose six Professional Electives (PE-I to PEVI) from the six baskets of professional electives given.

Students have the flexibility to choose from the list of professional electives offered by the JBIET or opt to register for the equivalent Massive Open Online Courses (MOOCs) with prior approval of the courses from Board of Studies and Academic Council.

- **5.9 Open Electives:** Students have to choose three Open Electives (OE-I, II & III) from three baskets of Open Electives given by other than the parent department. However, the student can opt for an Open Elective course offered by his parent department, if the student has not studied that course so far. Similarly, Open Elective courses being studied should not match with any courses of the forthcoming semesters.
- **5.10 Provision for Early Registration of MOOCs:** For a professional elective in a semester, students are allowed to register for an equivalent MOOCs course listed from time to time by the University one semester in advance. For example, a Professional Elective of III Year II Sem shall be allowed to register under MOOCs platform in III year I Sem.

The credits earned in one semester in advance can be submitted in the subsequent semester for the assessment. The students who have registered in advance in an equivalent MOOCs course and fail to secure any pass grade in the MOOCs course, can register for the regular course offered in the following semester of their course structure.

- **5.11 Conversion of Marks Secured in MOOCs into Grades:** Marks secured in the internal and external evaluations of a MOOCs course shall be scaled to 40 and 60 marks respectively. The sum of these two components shall be considered as the total marks out of 100. The corresponding grade shall then be determined as per the marks-to-grades conversion rules specified in Clause 10.3.
- **5.12** MOOCs are allowed only for professional elective courses and for a few Minors & Honors courses
- **5.13 Additional learning resources:** Students are encouraged to acquire additional course-related knowledge by auditing learning resources from MOOCs platforms for each course offered in their course structure. These additional courses are not meant for earning credits but are intended to enhance knowledge. They are categorized into three types: prerequisite, reinforcement, and aspirational. Prerequisite courses help students gain familiarity and provide sufficient background. Reinforcement courses aim to offer different perspectives on learning, while aspirational courses focus on next-level or advanced learning.

6.0 Rules to offer Elective courses

- 6.1 An elective course may be offered to the students, only if a minimum of 50% of class strength opts for it.
- 6.2 Same elective course for different sections may be offered by different faculty members. The selection of elective course by students will be based on first come first serve and / or CGPA criterion.
- 6.3 If the number of students registrations are more than the strength of one section, then it is choice of the concerned Department to offer the same course for more than one section based on the resources available in the department.

7.0 Attendance requirements:

- **7.1** A student shall be eligible to appear for the semester-end examinations, if the student acquires a minimum of 75% of aggregate attendance of all the courses for that semester.
- **7.2** Shortage of attendance in aggregate upto 10% (securing 65% and above but below 75%) in each semester may be condoned by the college academic committee on genuine and valid grounds, based on the student's representation with supporting evidence.
- **7.3** A stipulated fee shall be payable for condoning of shortage of attendance as notified.
- **7.4** Two hours of attendance for each theory course shall be considered, if the student appears for the mid-term examination of that course.
- **7.5** Shortage of attendance below 65% in aggregate shall in no case be condoned.
- **7.6** Students whose shortage of attendance is not condoned in any semester, are not eligible to take their semester-end examinations of that semester. They get detained and will not be promoted to the next semester. Their registration for that semester shall stand cancelled, including internal marks. They may seek re-registration for that semester in the next academic year.
- **7.7** A student fulfilling the attendance requirement in the present semester shall not be eligible for readmission into the same semester.

8.0 Criteria for Earning of Credits in a Course

- **8.1** A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course, if the student secures not less than 35% (21 marks out of 60 marks) in the semester end examinations (SEE), and a minimum of 40% (40 marks out of 100 marks) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together; in terms of letter grades, this implies securing 'C' grade or above in that course.
- **8.2** A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to Field Based Research Project / Industry Oriented Mini Project /

Internship, if the student secures not less than 40% marks (i.e. 40 out of 100 allotted marks) in each of them. The student is deemed to have failed, if he/she (i) does not submit a report on Field-Based Research Project/Industry Oriented Mini Project/Internship, or (ii) not make a presentation of the same before the evaluation committee as per schedule, or (iii) secures less than 40% marks in Field-Based Research Project / Industry Oriented Mini Project / Internship evaluations.

8.3 A student eligible to appear in the semester-end examination for any course, is absent from it or failed (thereby failing to secure 'C' grade or above) may re-appear for that course in the supplementary examination as and when it is conducted. In such cases, internal marks assessed in continuous internal evaluation (CIE) earlier for that course will be carried over and added to the marks obtained in the SEE supplementary/make-up examination. If the student secures sufficient marks for passing, 'C' grade or above shall be awarded as specified in clause 10.3.

9.0 Distribution of Marks and Evaluation

9.1 The performance of a student in every course (including Value Added Courses and Skill Development Courses, Laboratory/Practical and Project Work) will be evaluated for 100 marks each, with 40 marks allotted for CIE (Continuous Internal Evaluation) and 60 marks for SEE (Semester End-Examination), irrespective of the credits allocated.

9.2 Continuous Internal Evaluation (CIE)

9.2.1 Theory Courses:

For theory courses, during a semester, there shall be two mid-term examinations. Each Mid- Term examination consists of two parts i) Part – A for 10 marks, ii) Part – B for 20 marks, totalling to 30 marks. Total duration of mid-term examination is two hours.

1. Mid Term Examination for 30 marks:

- a. Part A: Objective/quiz paper for 10 marks.
- b. Part B: Descriptive paper for 20 marks.

The objective/quiz paper is set with multiple choice, fill-in the blanks and match the following type of questions for a total of 10 marks. The descriptive paper shall contain 6 questions out of which, the student has to answer 4 questions, each carrying 5 marks. The average of the two Mid Term Examinations shall be taken as the final marks for Mid Term Examination (for 30 marks).

While the first mid-term examination shall be conducted on 50% of the syllabus, the second mid-term examination shall be conducted on the remaining 50% of the syllabus. Questions will be drawn from the mid-term exam syllabus, ensuring uniform coverage of all topics. The remaining 10 marks of Continuous Internal Evaluation are distributed as follows:

- **2. Five marks for the assignment for 5 marks**. Student shall submit two assignments and the average of 2 Assignments each for 5 marks shall be taken. The first assignment should be submitted before the conduct of the first mid-term examination, and the second assignment should be submitted before the conduct of the second mid-term examination.
- **3. Five marks for the Viva-Voce/PPT/Poster Presentation/ Case Study** on a topic in the concerned subject. This assessment shall be completed before II Mid-Term Examination.

9.2.2 Engineering Drawing and Computer Aided Drafting Course:

For this course, 20 marks will be allocated for day-to-day assessments conducted during drawing practice sessions, and another 20 marks will be allocated for the mid-term examination. In the mid-term examination, students shall attempt any four out of six given questions. The first mid-term exam will be conducted in the conventional mode using a drawing board, while the second mid-term exam will be conducted using a CAD package.

- **9.3** A **Computer-Based Test (CBT)** in each course is available for students who either:
 - 1. missed one of the two mid-term examinations due to unavoidable circumstances, or
 - 2. attended both mid-term examinations but wish to improve their internal marks.

The CBT will be conducted at the end of the semester and will carry a total of 30 marks. The marks obtained in the CBT will be considered equivalent to those obtained in one mid-term examination. Zero marks will be awarded to students who are absent from the mid-term examination. The average of the best two scores from the three exams (the two mid-term exams and the CBT), combined with other internal assessment components, will constitute the Continuous Internal Improvement (CII) marks for that specific course.

9.4 Semester End Examination for theory courses

9.4.1 Theory Courses:

The semester end examinations (SEE), for theory courses, will be conducted for 60 marks consisting of two parts viz. i) Part- A for 10 marks and ii) Part - B for 50 marks.

- Part-A is compulsory, consists of five short answer questions covering all units of syllabus; each question carries two marks.
- Part-B consists of five questions carrying 10 marks each. There shall be two
 questions asked in the question paper from each unit with either-or choice and the
 student should answer either of the two questions. The student shall answer one
 question from each of five units.

9.4.2 Engineering Drawing and Computer Aided Drafting Course:

Question paper consists of five questions carrying 12 marks each. There shall be two questions asked in the question paper from each unit with either-or choice and the student should answer either of the two questions. The student shall answer one question from each of five units. There shall be no section with short answer questions.

9.4.3 Duration of SEE:

The duration of Semester End Examination of theory and drawing courses is 3 hours.

9.5 Semester End Examination for Practical Courses

For practical courses there shall be a Continuous Internal Evaluation (CIE) during the semester for 40 marks and semester-end examination for 60 marks. The breakup of the continuous internal evaluation for 40 marks is as follows:

- 1. 10 marks for a write-up on day-to-day experiments in the laboratory (in terms of aim, components/procedure, expected outcome).
- 2. 10 marks for viva-voce (or) tutorial (or) case study (or) application (or) poster presentation of the course concerned.
- 3. 10 marks for the internal practical examination conducted by the laboratory teacher concerned.
- 4. The remaining 10 marks are for Laboratory Report/Project and Presentation, which consists of the Design (or) Software / Hardware Model Presentation (or) App Development (or) Prototype submission which shall be evaluated after completion of laboratory course and before semester end practical examination.

The Semester End Examination for practical courses shall be conducted with an external examiner and the laboratory course teacher. The external examiner shall be appointed from the college outside their cluster and not from a group colleges.

In the Semester End Examination for practical courses held for 3 hours, rubrics of evaluation for 60 marks is as given below:

- 1. 10 marks for write-up
- 2. 15 for experiment/program
- 3. 15 for evaluation of results
- 4. 10 marks for presentation on another experiment/program in the same laboratory course and
- 5. 10 marks for viva-voce on concerned laboratory course.

For any change of experiment, 5 marks will be deducted from the total of 60 marks. If second time change of experiment is requested, another five marks will be deducted from the 60 marks. No third change will be permitted.

9.6 Field-based Research Project:

There shall be a Field-based Research Project in the intervening summer between II-II and III-I Semesters. Students will register for this project immediately after II Year II Semester examinations and pursue it during summer vacation. The Field-based Research Project shall be submitted in a report form and presented before the committee in III year I semester. It shall be evaluated for 100 external marks. The evaluation committee shall consist of an External Examiner, Head of the Department, Supervisor of the Project and a Senior Faculty Member of the department. There shall be no internal marks for Field-based Research Project. Student shall have to earn 40% marks, i.e 40 marks out of 100 marks. The student is deemed to have failed, if he (i) does not submit a report on the Project, or (ii) does not make a presentation of the same before the committee as per schedule, or (iii) secures less than 40% marks in this course.

9.7 Internship/Industry Oriented Mini Project:

There shall be an Internship/Industry Oriented Mini Project in collaboration with an industry from their specialization. Students shall register for this project immediately after III Year II Semester Examinations and pursue it during summer vacation. Internship should be carried out at an organization (or) Industry. The Industry Oriented Mini Project

shall be submitted in a report form and presented before the committee in IV Year I Semester before the semester end examination. It shall be evaluated for 100 external marks. The committee consists of an External Examiner, Head of the Department, Supervisor of the Industry Oriented Mini Project/Internship, and a Senior Faculty Member of the Department.

9.7.1 For evaluating industry-oriented mini-projects, it is preferable to appoint an external examiner from the industry, ideally from one of the organizations/ industries with which the institute has established / proposing to establish collaborations.

9.8 UG Project Work:

- **9.8.1** The UG project work shall be initiated at the beginning of the IV Year II Semester, and the duration of the project work is one semester. The student must present in consultation with his/her supervisor, the title, objective and plan of action of his/her Project work to the departmental committee for approval within two weeks from the commencement of IV Year II Semester. Only after obtaining the approval of the departmental committee, the student can start his/her project work.
- **9.8.2** Student has to submit project work report at the end of IV Year II Semester. The project work shall be evaluated for 100 marks. Out of which 40 marks and 60 marks are allocated for CIE and External Evaluation respectively.
- **9.8.3** For internal evaluation, the departmental committee consisting of Head of the Department, Project Supervisor and a Senior Faculty Member shall evaluate the project work for 40 marks.
 - The distribution of marks is as follows:

Objective(s) of the work done
 - 05 Marks

Methodology adopted - 15 Marks

Results and Discussions - 15 Marks

Conclusions and Outcomes - 05 Marks

Total - 40 Marks

9.8.4 The External Evaluation shall be conducted by the external examiner for a total of 60 marks. It shall comprise the presentation of the work, communication skills, and vivavoce, with a weightage of 20 marks, 15 marks, and 25 marks respectively.

The topics for main Project shall be different from the topic of Industry Oriented Mini Project/ Internship/SDC. The student is deemed to have failed, if he (i) does not submit a report on the Project, or (ii) does not make a presentation of the same before the External Examiner as per schedule, or (iii) secures less than 40% marks in the sum total of the CIE and SEE taken together.

- **9.8.5** For conducting viva-voce exam of project work, University appoints an external examiner. The external examiner may be selected from the list of experts submitted by the Principal of the College.
- **9.8.6** A student who has failed, may re-appear once for the above evaluation, when it is scheduled again; if student fails in such 'one re-appearance' evaluation also, he/she has to appear for the same in the next subsequent year, as and when it is scheduled.

9.9 Skill Development Courses:

Four Skill Development Courses are included in the Curriculum in II-1, II-2, III-1 and III-2 semesters. Each Skill Development Course carries one credit. The evaluation pattern will be same as that of a laboratory course including the internal and external assessments.

The objective of Skill Courses is to develop the cognitive skills as well as the psychomotor skills.

9.10 Value-Added Courses:

The evaluation of Value-Added Courses shall be similar to that of theory courses. However, the scheduling of these mid-term exams and semester-end examinations may not be combined with main-stream examinations. One hour /45 mins proctored mid-term examination shall be conducted in the regular class by the same subject teacher. It should not impact the conduct of other classes on that day.

The scheduling of the semester-end examinations shall also be intimated by the University time to time.

10.0 Grading Procedure

- **10.1** Absolute grading system is followed for awarding the grades to each course.
- **10.2** Grades will be awarded to indicate the performance of students in each Theory, Laboratory, Industry-Oriented Mini Project/ Internship/ Skill development course and

Project Work. Based on the percentage of marks obtained (Continuous Internal Evaluation plus Semester End Examination, both taken together) as specified in clause 8 above, a letter grade shall be given as explained in the following clause.

10.3 To measure the performance of a student, a 10-point grading system is followed. The mapping between the percentage of marks secured and the corresponding letter grade is as follows:

Range of % of Marks Secured in a Course	Letter Grade	Grade Points (GP)
Greater than or equal to 90	O (Outstanding)	10
80 and less than 90	A+ (Excellent)	9
70 and less than 80	A (Very Good)	8
60 and less than 70	B+ (Good)	7
50 and less than 60	B (Average)	6
40 and less than 50	C (Pass)	5
Below 40	F (FAIL)	0
Absent	Ab	0

- **10.4** A student shall be declared successful or 'passed' in a semester, if he/she secures 'C' grade or above in every course (ie GP ≥ 5)
- **10.5** A student who has obtained an 'F' grade in any course shall be deemed to have 'failed' and is required to re-appear for a supplementary exam as and when conducted. In such cases, internal marks in those courses will remain the same as those obtained earlier.
- **10.6** To a student who has not appeared for an examination in any course, 'Ab' grade will be allocated in that course, and he/she is deemed to have 'Failed'. Such student will be required to re-appear for supplementary/make-up exam as and when conducted. The internal marks in those courses will remain the same as those obtained earlier.
- **10.7** The students earn a Grade Point (G) in each course, on the basis of letter grade secured in that course. Every student who passes a course will receive grade point GP ≥ 5 ('C' grade or above).

10.8 The 'Credit Points' (C) are computed by multiplying the grade point with credits for a given course.

Credit Points (CP) = Grade Point (GP) x Credits for a course

10.9 The Semester Grade Point Average (SGPA) is calculated only when all the courses offered in a semester are cleared by a student. It is calculated by dividing the sum of credit points (\sum CG) secured from all courses registered in a semester, by the total number of credits registered during that semester. SGPA is rounded off to two decimal places. SGPA for each semester is thus computed as

$$SGPA = \frac{\sum_{i=1}^{N} C_i G_i}{\sum_{i=1}^{N} C_i}$$
 for each Semester

where 'i' is the course indicator index (considering all courses in a semester), 'N' is the no. of courses 'registered' for the semester (as listed under the course structure of the branch), C_i is the no. of credits allotted to the ith course, and G_i represents the grade points (GP) corresponding to the letter grade awarded for that ith course.

- **10.10** If a student earns more than 160 credits, only the courses corresponding to the best 160 credits shall be considered for the computation of CGPA of B.Tech. degree.
- **10.11** The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student in all semesters considered for registration. The CGPA is the ratio of the total credit points secured by a student for the courses correspond to best 160 credits out of all registered courses in all semesters, and the total number of credits correspond to those selected courses. CGPA is rounded off to two decimal places. CGPA is thus computed at the end of each semester, from the I year II semester onwards, as per the formula

$$CGPA = \frac{\sum_{j=1}^{M} C_{j}G_{j}}{\sum_{j=1}^{M} C_{j}}$$
 for all S number of semesters registered

where 'M' is the total no. of courses corresponding to the best 160 credits from the courses registered in all eight semesters, 'j' is the course indicator index (takes into account all courses from 1 to 8 semesters), C_j is the no. of credits allotted to the j^{th} course, and G_j represents the grade points (GP) corresponding to the letter grade awarded for that j^{th} course.

Illustration of calculation of SGPA:

Course	Credits	Letter Grade	Grade Points	Credit Points
Course 1	4	Α	8	4 x 8 = 32
Course 2	3	0	10	3 x 10 = 30
Course 3	3	С	5	3 x 5 = 15
Course 4	3	В	6	3 x 6 = 18
Course 5	3	Α	8	3 x 8 = 24
Course 6	2	A+	9	2 x 9 = 18
Course 7	1	С	5	1 x 5 = 5
Course 8	1	0	10	1 x 10 = 10
	20			152

$$SGPA = \frac{152}{20} = 7.6$$

The CGPA of the entire B.Tech. programme shall be calculated considering the best 160 credits earned by the student.

- **10.12** For merit ranking or comparison purposes or for any other listing, only the 'rounded off' value of the CGPAs will be used.
- **10.13** SGPA of a semester will be mentioned in the semester Memorandum of Grades if all courses of that semester are cleared in first attempt. Otherwise, the SGPA shall be mentioned only on the Memorandum of Grades in which sitting he passed his last exam in that semester.

11.0 Declaration of Results and issue of Grade Memo

- **11.1** While declaring the results, the web-version should display the marks earned by the students with the internal and external marks break-up. However, in the memorandum of grades, the marks need not be shown.
- **11.2** After the completion of each semester, a certificate of memorandum of grades shall be issued to all the registered students, indicating the letter grades and credits earned. It will show the details of the courses registered (course code, course title, no. of credits), letter grade and credits earned.

12.0 Withholding of Results

12.1 If the student has not paid the fees to the JBIET at any stage, or has dues pending due to any reason whatsoever, or if any case of indiscipline is pending, the result of the student may be withheld, and the student will not be allowed to go into the next higher semester. The award or issue of the degree may also be withheld in such cases.

13.0 Supplementary Examinations:

- **13.1** At the end of each semester, along with regular semester examinations, supplementary examinations shall be conducted for the students who have back-log subjects.
- **13.2** Advanced supplementary examinations in IV Year II Semester courses may be conducted for those who failed in any course offered in IV Year II Semester. It may enable the students to receive their B.Tech. provisional certificate at an early date. Advanced supply examinations may be scheduled within one month period after the declaration of the final semester results. There shall be no supplementary examination in the successive semester. The students who could not secure any pass grade in advance supplementary examinations have to wait for regular series examination of next batch to write their backlog examination.

14.0 Promotion Rules

S. No.	Promotion	Conditions to be fulfilled
1	First year first semester to first year second semester	Regular course of study of first year first semester and fulfilment of attendance requirement.
2	First year second semester to second year first semester	(i) Regular course of study of first year second semester and fulfilment of attendance requirement (ii) Must have secured at least 25% of the total credits up to first year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.
3.	Second year first semester to second year second semester	Regular course of study of second year first semester and fulfilment of attendance requirement.
4	Second year second semester to third year first semester	 (i) Regular course of study of second year second semester and fulfilment of attendance requirement. (ii) Must have secured at least 25% of the total credits up to second year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.
5	Third year first semester to third year second semester	Regular course of study of third year first semester and fulfilment of attendance requirement.
6	Third year second semester to fourth year	Regular course of study of third year second semester and fulfilment of attendance

	first semester	requirement.					
	Fourth year first semester	Regular course of study of fourth year first					
7	to fourth year second	semester and fulfilment of attendance					
	semester	requirement.					

15.0 Re-admission after Detention

- i) A student detained due to lack of credits, shall be promoted to the next academic year only after acquiring the required number of credits.
- ii) A student detained due to shortage of attendance shall be admitted in the same semester in the successive academic years.
- iii) When a student is readmitted in the following academic years, the academic regulations under which the student seeks re-admission shall only be applicable to this student, not the academic regulations in which he got admitted in his/her first year of study.

16.0 Credit Exemption

A student (i) shall register for all courses covering 164 credits as specified and listed in the course structure and (ii) earn 160 or more credits to successfully complete the undergraduate programme.

- Best 160 credits shall be considered for CGPA computation. The student can avail exemption of courses totaling up to 4 credits other than Professional core courses, Laboratory Courses, Seminars, Project Work and Field Based Research Project / Industry Oriented Mini Project / Internship, for optional drop out from these 164 credits registered.
- The semester grade point average (SGPA) of each semester shall be mentioned at the bottom of the grade card, when all the subjects in that semester have been passed by the student.
- Credits earned by the student in either a Minor or Honors program cannot be counted towards the required 160 credits for the award of the B.Tech. degree.

17.0 Award of Degree

17.1 A student who registers for all the courses specified in the course structure and secures the required number of 160 credits within 8 academic years from the date of commencement of the first academic year, shall be declared to have qualified for the award of B.Tech. degree by JNTUH in the branch of Engineering selected at the time of admission.

- **17.2** A student who qualifies for award of the degree by JNTUH as listed in item 17.1 shall be placed in the following classes.
- **17.3** A student with final CGPA (at the end of the undergraduate programme) ≥ 7.5, and fulfilling the following conditions shall be placed in 'First Class with Distinction':
 - (i) Should have passed all the courses in 'First Appearance'.
 - (ii) Should not have been detained or prevented from writing the semester end examinations in any semester due to shortage of attendance or any other reason.

A student not fulfilling any of the above conditions with final CGPA ≥ 7.5 shall be placed in 'First Class'.

- **17.4** Students with final CGPA (at the end of the undergraduate programme) \geq 6.5 but < 7.5 shall be placed in 'First Class'.
- **17.5** Students with final CGPA (at the end of the undergraduate programme) ≥ 5.5 but < 6.5, shall be placed in 'Second Class'.
- **17.6** All other students who qualify for the award of the degree (as per item 17.1), with final CGPA (at the end of the undergraduate programme) \geq 5.00 but < 5.5, shall be placed in 'pass class'.

17.7 Grace Marks

Grace marks shall be given to those students who complete the course work of four year B. Tech. degree, not secured pass grade in not more than three subjects and adding a specified grace marks enables the student to pass the subject(s) as well as gets eligibility to receive the provisional degree certificate.

Grace marks for students admitted under the R-25 Academic Regulations should not exceed 0.15% of the total maximum marks in all eight semesters (excluding the marks allocated for value added courses and skill development courses).

18.0 Award of Gold Medals

- **18.1** Students fulfilling the conditions listed under item 17.3 alone will be eligible for award of 'Gold Medal' during Graduation Day.
- **18.2** If more than one student secures the same highest CGPA, then the following tie resolution criteria, in the same order of preference shall be followed for selecting the Gold Medal winner, until the tie is resolved: 1) more number of times secured highest SGPAs, ii) more number of O and A+ grades in that order and iii) highest SGPA in the order of first semester to eight semester.

19.0 Conversion of CGPA into equivalent Percentage of Marks

19.1 The following formula shall be used for the conversion of CGPA into equivalent marks, whenever it is necessary

Percentage (%) of Marks = (Final CGPA - 0.5) x 10

20.0 Honours and Minor Degree Programs

Honours and Minor Degree programs will be available in all branches of B.Tech. degree. Minor Degree programs will commence from II Year II Semester and continue till IV Year I semester and Honours Degree programs will commence from III Year I Semester and continue till IV Year II semester.

Only the JNTUH approved Minors and Honors shall be offered.

21.0 Multiple Entry Multiple Exit Scheme (MEME)

21.1 Exit Option after Second Year:

Students enrolled in the 4-Year B.Tech. program are permitted to exit the program after successful completion of the second year (B.Tech. II Year II Semester). The students who desire to exit after the II year shall formally inform the exit plan one semester in advance i.e. at the commencement of II Year II Semester itself. Such students need to fulfil the additional requirements as specified in Clause 21.2 described below.

Upon fulfilling the requirements like earning all the credits up to II Year II Semester and successfully completing the additional requirements, the students will be awarded a 2-Year Undergraduate (UG) Diploma in the concerned engineering branch.

21.2 Additional Requirements for Diploma Award

To qualify for the diploma under the exit option, students must also complete 2 additional credits through one of the following University-prescribed pathways:

Work-based Vocational Course:

Participation in a practical, hands-on vocational training program relevant to the engineering field, typically conducted during the summer term.

Internship/Apprenticeship:

Completion of a minimum 8-week internship or apprenticeship in their related field to gain practical industry exposure.

In addition, students must clear any associated course(s) and submit the internship/apprenticeship report as per the schedule and guidelines.

21.3 Re-entry into the B.Tech. Program

Students who have exited the B.Tech. program with a 2-Year UG Diploma may apply for re-entry into the Third Year (Fifth Semester) of the B.Tech. program. Re-entry is subject to the following conditions:

The student must surrender the awarded UG Diploma Certificate.

- Students who wish to rejoin in III Year must join the same B.Tech. program. Before
 rejoining, students should check for continuation of the same branch at the college.
 If the specific branch is closed then student should consult the University for the
 possible alternative solutions.
- Re-registered students will be governed by the academic regulations in effect at the time of re-entry, regardless of the original regulations under which they were admitted.

If a student opts to continue his/her studies without a gap after being awarded the diploma, they must register for the third-year courses before the commencement of classwork.

21.4 Break in Study and Maximum Duration

Students are allowed to take a break of up to four years after completion of II Year II Semester with prior University permission through the Principal of the college.

Re-entry after such a break is subject to the condition that the student completes all academic requirements within twice the duration of the program (i.e., within 8 years for a 4-year B.Tech. program).

22.0 Transitory Regulations for the students re-admitted in R-25 Regulations:

- **22.1** Transitory regulations are applicable to the students detained due to shortage of attendance as well as detained due to the shortage of credits and seek permission to rejoin the B.Tech. programme, where R-25 regulations are in force.
- **22.2** A student detained due to shortage of attendance and re-admitted in R-25 regulations: Such students shall be permitted to join the same semester, but in R-25 Regulations.
- **22.3** A student detained due to shortage of credits and re-admitted in R-25 regulations: Such students shall be promoted to the next semester in R-25 regulations, only after acquiring the required number of credits as per the corresponding regulations of his/her previous semester.
- **22.4** A student who has failed in any course in a specific regulation has to pass those courses in the same regulations.
- **22.5** If a student is readmitted to R-25 Regulations and has any course with 80% of syllabus common with his/her previous regulations, that particular course in R-25 Regulations will be substituted by an equivalent course of R-24 or R-22 regulations approved by BOS, AC followed by JNTUH. All these details are summarized in a set of look-up Table; one set for each B. Tech. branch.

22.6 Look Up Table of equivalence courses

- **22.6.1** A lookup table will be provided for the benefit of students. This lookup table will include all the courses to be registered by students who have been re-admitted under the R-25 Academic Regulations from the R-24 and R-22 Academic Regulations. Separate lookup tables will be provided for the following categories of students:
 - 1. Students re-admitted into the I Year II Semester of the R-25 Regulations
 - 2. Students re-admitted into the II Year I Semester of the R-25 Regulations
 - 3. Students re-admitted into the II Year II Semester of the R-25 Regulations
 - 4. Students re-admitted into the III Year I Semester of the R-25 Regulations
 - 5. Students re-admitted into the III Year II Semester of the R-25 Regulations
 - 6. Students re-admitted into the IV Year I Semester of the R-25 Regulations
 - 7. Students re-admitted into the IV Year II Semester of the R-25 Regulations

For every B.Tech. branch there shall be separate set of seven lookup tables.

22.7 The R-25 Academic Regulations are applicable to a student from the year of readmission. However, the student is required to complete the study of B.Tech. degree within the stipulated period of eight academic years from the year of first admission.

23.0 Student Transfers

- **23.1** Transfer of students from other Colleges or Universities are permitted subject to the rules and regulations of Telangana State Council for Higher Education (Technical Education Department) and JNTUH in voque.
- **23.2** The transferred students shall be given a chance to write CBTs for getting CIE component in the equivalent course(s) as per the clearance letter issued by the JNTUH.

24.0 Value Added Courses

- **24.1** Faculty members who have received a certificate in Innovation and Entrepreneurship / Entrepreneurship from a reputed foundation/organization may be given preference to teach the "Innovation and Entrepreneurship" course. This certificate course should include an assessment. Total training duration (online or physical), excluding assessment, should be at least 30 hours. Faculty members from all disciplines with innovative mindset and aptitude to co-create an entrepreneurial ecosystem are eligible to teach this subject.
- **24.2** Faculty members who have credited a course on Intellectual Property Rights in their UG or PG programme or credited an equivalent course in MOOCs platform/ reputed foundation/ organization in which assessment is a part, may be given preference to teach the elective course on Intellectual Property Rights.

24.3 To ensure quality delivery and standardization in teaching the Indian Knowledge System (IKS) and other value-added courses, the following guidelines must be adhered to: i) faculty members must undergo a Faculty Development Program (FDP) organized by UGC-MMTTC (Malaviya Mission Teacher Training Centre), or Any other recognized and competent institution/organization offering similar certified programs, ii) the total instructional duration of the FDP should be a around 32 hours or more, III) all sessions in the FDP must be conducted by certified and qualified resource persons with recognized expertise in the respective domains, iv) A formal assessment component must be included as part of the FDP.

25.0 Mapping with the Sustainable Development Goals

All the courses specified in the course structure of every programme are mapped with the one or more sustainable development goals.

26.0 Scope

- **26.1** The academic regulations should be read as a whole, for the purpose of any interpretation.
- **26.2** In case of any doubt or ambiguity in the interpretation of the above rules, the decision of Principal, JBIET is final.
- **26.3** The Institution may change or amend the academic regulations, course structure or syllabi atany time, and the changes or amendments made shall be applicable to all students with effect from the dates notified by the Institution authorities.
- 26.4 Where the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".

27.0 Malpractices Rules

Disciplinary Action For / Improper Conduct in Examinations

	Nature of Malpractices/Improper conduct	Punishment
	If the student:	
1.(a)	Possesses any item accessible in the examination hall like paper, note book, programmable calculators, cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which student is appearing but has not made use of (material shall include any marks on the body of the student which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
	Gives assistance or guidance or receives it from any other student	Expulsion from the examination hall

(b)	orally or by any nonverbal cues or communicates through cell phones with any student or persons in or outside the exam hall in respect of any matter.	and cancellation of the performance in that subject only of all the students involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the student is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year.
3.	Smuggles in the answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred for two consecutive semesters from class work and all End examinations. The continuation of the course by the student is subject to the academic regulations in connection with forfeiture of seat.
4.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
5.	Refuses to obey the orders of the chief superintendent/ assistant superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-incharge, or any person on duty in or	In case of students of the college, they is expelled from examination halls and cancellation of their performance in that subject and all other subjects the student(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The students also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a Police case is registered against them.

		to the college will be handed over to police and, a police case will be registered against them.
8.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred and forfeits the seat. Person(s) who do not belong
7.	Possesses any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred and forfeits the seat.
6.	Leaves the exam hall taking away answer script or intentionally tears off the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that Semester/year. The student is also debarred for two consecutive semesters from class work and all End examinations. The continuation of the course by the student is subject to the academic regulations in connection with forfeiture of seat.
	outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the college campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination	

	examination hall.	and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year
10.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the student has appeared including practical examinations and project work of that semester/year examinations.

❖ If any malpractice is detected which is not covered in the above clauses 1 to 10 shall be referred to the Malpractice Committee for further action and to impose suitable punishment.

J. B. Institute of Engineering and Technology (UGC Autonomous)

B. Tech - ME

	I Year I Semester							
S. No.	Code	Course Title	L	Т	P	С	common subject (Y/N)	Approving BOS
1	N1100A	Matrices and Calculus	3	1	0	4	Υ	MATHS
2	N1100B	Advanced Engineering Physics	3	0	0	3	Υ	PHYSICS
3	N1105B	C Programming and Data Structures	3	0	0	3	Υ	CSE
4	N1103B	Engineering Mechanics	3	0	0	3	N	ME
5	N1100D	English for Skill Enhancement	3	0	0	3	Υ	ENGLISH
6	N11001	Advanced Engineering Physics Lab	0	0	2	1	Υ	PHYSICS
7	N11052	C Programming and Data Structures Lab	0	0	2	1	Υ	CSE
8	N11003	English Language and Communication Skills Lab	0	0	2	1	Υ	ENGLISH
9	N11031	Engineering Workshop	0	0	2	1	Υ	ME
		Induction Program	-	-	-	-	-	-
	Total 15 01 08 20							

		I Year II Semes	ter					
S. No.	Code	Course Title	L	т	P	С	common subject (Y/N)	Approving BOS
1	N1200A	Ordinary Differential Equations and Vector Calculus	3	0	0	3	Υ	MATHS
2	N1200E	Applied Chemistry	3	0	0	3	Υ	PHYSICS
3	N1205B	Python Programming	3	0	0	3	Υ	CSE
4	N1202B	Elements of Electrical and Electronics Engineering	3	0	0	3	Υ	EEE
5	N1203B	Thermodynamics	3	0	0	3	N	ME
6	N1203A	Engineering Drawing and Computer Aided Drafting	2	0	2	3	Y	ME
7	N12004	Chemistry Lab for Engineers	0	0	2	1	Y	CHEMISTRY
8	N12053	Python Programming Lab	0	0	2	1	Y	CSE
9	N12022	Elements of Electrical and Electronics Engineering	0	0	2	1	Υ	EEE
10	N1200F	Lingua Skills for Professionals-B1	2	0	0	0		English
	Total 19 00 08 21							

		II Year I Semes	ter					
S. No.	Code	Course Title	L	т	P	С	common subject (Y/N)	Approving BOS
1	N2100C	Probability, Statistics and Complex Variables	3	0	0	3	Y	MATHS
2	N2103A	Mechanics of Solids	3	0	0	3	Ν	ME
3	N2103B	Material Science and Metallurgy	3	0	0	3	N	ME
4	N2103C	Production Technology	3	0	0	3	N	ME
5	N2103D	Fluid Mechanics and Hydraulic Machines	3	0	0	3	N	ME
6	N21001	Computational Mathematics Lab	0	0	2	1	Y	MATHS
7	N21031	Production Technology Lab	0	0	2	1	N	ME
8	N21032	Material Science and Mechanics of Solids Lab	0	0	2	1	N	ME
9	N21033	Fluid Mechanics and Hydraulic Machines Lab	0	0	2	1	N	ME
10	N21034	Design Thinking and Ideation	0	0	2	1	Υ	
		Total	15	00	10	20	_	

	II Year II Semester											
S. No.	Code	Course Title	L	т	Р	С	common subject (Y/N)	Approving BOS				
1	N2203A	Kinematics of Machinery	3	0	0	3	N	ME				
2	N2203B	Thermal Engineering – I	3	0	0	3	N	ME				
3	N2203C	Design of Machine Elements	3	0	0	3	N	ME				
4	N2203D	Instrumentation and Control Systems	3	0	0	3	N	ME				
5	N2203E	Operations Research	2	0	0	2	N	ME				
6	N220EA	Innovation and Entrepreneurship	2	0	0	2	Y	МВА				
7	N22031	Conventional and Computer Aided Machine Drawing	0	0	2	1	N	ME				
8	N22032	Instrumentation and Control Systems Lab	0	0	2	1	N	ME				
9	N22033	Thermal Engineering-I Lab	0	0	2	1	N	ME				
10	N22054	Data Analytics and Python for Engineers	0	0	2	1	Υ	CSE				
11	N2200C	Indian Knowledge System	1	0	0	1	Υ	S&H				
12	N2200D	Lingua Skills for Professionals-B2	2	0	0	0		English				
		Total	19	00	08	21						

		III Year I Seme	ster					
S. No.	Code	Course Title	L	Т	P	С	common subject (Y/N)	Approving BOS
1	N3103A	Design of Transmission Elements	3	0	0	3	N	ME
2	N3103B	Thermal Engineering - II	3	0	0	3	N	ME
3	N3103C	Metrology and Machine Tools	3	0	0	3	N	ME
4	PE-MEC1	Professional Elective-I	3	0	0	3	N	ME
5	OE-MEC1	Open Elective-I	2	0	0	2		
6	N31031	Thermal Engineering - II Lab	0	0	2	1	N	ME
7	N31032	Metrology and Machine Tools Lab	0	0	2	1	N	ME
8	N31033	Modelling and Drafting Lab	0	0	2	1	N	ME
9	N31034	Field Based Research Project	0	0	4	2	N	ME
10	N31035	Modelling and Simulation Tools	0	0	2	1	N	ME
11	N3100B	Gender Sensitization*/ Human Values and Professional Ethics*	1	0	0	0.5+ 0.5	Υ	MBA
		Total	15	00	12	21		

*Note: For the courses Gender Sensitization and Human Values and Professional Ethics - one hour of instruction will be conducted on alternate weeks. For example, if a one-hour class for Gender Sensitization is conducted this week, then a one-hour class for Human Values and Professional Ethics will be conducted in the following week.

		III Year II Semes	ter					
S. No.	Code	Course Title	L	Т	Р	С	common subject	Approving BOS
1	N3203A	Dynamics of Machinery	3	0	0	3	N	ME
2	N3203B	Heat Transfer	3	0	0	3	N	ME
3	N320EA	Business Economics and Financial Analysis	3	0	0	3	Υ	MBA
4	PE-MEC2	Professional Elective-II	3	0	0	3		
5	OE-MEC2	Open Elective – II	2	0	0	2	N	ME
6	N32031	Heat Transfer Lab	0	0	2	1	N	ME
7	N32032	Applied Manufacturing Lab	0	0	2	1	N	ME
8	N32033	Kinematics and Dynamics Lab	0	0	2	1	N	ME
9	N32001	English for Employability Skills Lab	0	0	2	1	Y	ENGLISH
10	N32034	Troubleshooting of Mechanical Systems	0	0	2	1	N	ME
11	N3200A	Environmental Science	1	0	0	1	Υ	CE
		Total	15	00	10	20		

		IV Year I Semest	er					
S. No.	Code	Course Title	L	т	P	С	common subject (Y/N)	Approving BOS
1	N4103A	Finite Element Methods	3	0	0	3	N	ME
2	N4103B	Robotics and Automation	3	0	0	3	N	ME
3	N410EB	Industrial Engineering and Management	3	0	0	3	N	ME
4	PE-MEC3	Professional Elective - III	3	0	0	3	N	ME
5	PE-MEC4	Professional Elective – IV	3	0	0	3	N	ME
6	OE-MEC3	Open Elective – III	2	0	0	2		
7	N41031	Computer Aided Analysis Lab	0	0	2	1	N	ME
8	N41032	Robotics and Automation Lab	0	0	2	1	N	ME
9	N41033	Industry Oriented Mini Project/ Internship	0	0	4	2	N	ME
		1 7	00	08	21			

	IV Year II Semester										
S. No.	Code	Course Title	L	Т	Р	С	common subject (Y/N)	Approving BOS			
1	PE-MEC5	Professional Elective – V	3	0	0	3	N	ME			
2	PE-MEC6	Professional Elective – VI	3	0	0	3	N	ME			
3	N42031	Project Work	0	0	42	14	N	ME			
	Total 06 00 42 20										

Note: All End Examinations (Theory and Practical) are of three-hour duration.

L – Lecture, T – Tutorial, P – Practical, D – Drawing, C – Credits.

J. B. Institute of Engineering and Technology (UGC Autonomous)

B. Tech - ME

	Professional Elective-I										
S. No.	Code	Course Title	L	т	P	С	common subject (Y/N)	Approving BOS			
1	N3103D	Power Plant Engineering	3	0	0	3	N	MECH			
2	N3103E	Automobile Engineering	3	0	0	3	N	MECH			
3	N3103F	Refrigeration and Air-Conditioning	3	0	0	3	N	MECH			
4	N3102E	Renewable Energy Sources	3	0	0	3	N	MECH			

	Professional Elective-II										
S. No.	Code	Course Title	L	т	P	С	common subject (Y/N)	Approving BOS			
1	N3203C	Additive Manufacturing	3	0	0	3	N	MECH			
2	N3203D	Micro Manufacturing	3	0	0	3	N	MECH			
3	N3203E	Artificial Intelligence in Mechanical Engineering	3	0	0	3	N	MECH			
4	N3203F	Advanced Machining Processes	3	0	0	3	N	MECH			

	Professional Elective-III										
S. No.	Code	Course Title	L	т	Р	С	common subject (Y/N)	Approving BOS			
1	N4103C	Mechanical Vibrations	3	0	0	3	N	MECH			
2	N4103D	Mechanics of Composite Materials and Structures	3	0	0	3	N	MECH			
3	N4103E	Design for Manufacturing and Assembly	3	0	0	3	N	MECH			
4	N4103F	Mechatronic Systems	3	0	0	3	N	MECH			

	Professional Elective-IV										
S. No.	Code	Course Title	L	т	Р	С	common subject (Y/N)	Approving BOS			
1	N4103G	Plant Maintenance and Reliability Engineering	3	0	0	3	N	MECH			
2	N4103H	Total Quality Management	3	0	0	3	N	MECH			
3	N4112K	Database Management Systems	3	0	0	3	N	MECH			
4	N4103I	Production Planning and Control	3	0	0	3	N	MECH			

	Professional Elective-V										
S. No.	Code	Course Title	L	т	Р	С	common subject (Y/N)	Approving BOS			
1	N4203A	Product Design and Manufacturing	3	0	0	3	N	MECH			
2	N4203B	Computational Fluid Dynamics	3	0	0	3	N	MECH			
3	N4202C	Electric and Hybrid Vehicles	3	0	0	3	N	MECH			
4	N4273D	Artificial Neural Networks	3	0	0	3	N	MECH			

Professional Elective-VI								
S. No.	Code	Course Title	L	т	P	С	common subject (Y/N)	Approving BOS
1	N4203C	Hydraulics and Pneumatics	3	0	0	3	N	MECH
2	N4201A	Sustainable Engineering	3	0	0	3	N	MECH
3	N4203E	AI/ML for Design Analysis	3	0	0	3	N	MECH
4	N4203F	Project Management	3	0	0	3	N	MECH

J. B. Institute of Engineering and Technology

(UGC Autonomous)

B. Tech - ME

Open Elective-I						
S. No.	Code	Course Title	L	Credits	Approving BOS	
1						
2						
3						
4	N3103OA	Optimization Methods	2	2	ME	
5	N3103OB	Industrial Robotics	2	2	ME	
6						
7						
8						
9						
10						
11						

J. B. Institute of Engineering and Technology

(UGC Autonomous)

B. Tech - ME

Open Elective-II					
S. No.	Code	Course Title	L	Credits	Approving BOS
1					
2					
3					
4	N3203OA	Artificial Intelligence in Mechanical Engineering	2	2	ME
5	N3203OB	Non-Conventional Sources of Energy	2	2	ME
6					
7					
8					
9					
10					
11					

JBIET- R24

J. B. Institute of Engineering and Technology

(UGC Autonomous)

B. Tech - ME

B. Tech. Course Structure

		Open Elective-III			
S. No.	Code	Course Title	L	Credits	Approving BOS
1					
2					
3					
4	N4103OA	Engineering Materials	2	2	ME
5	N4103OB	Digital Manufacturing	2	2	ME
6					
7					
8					
9					
10					
11					

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)			h: M -I Se	
Course Code:	MATRICES AND CALCULUS	L	Т	Р	С
N1100A	(Common to: CE, EEE, ME, ECE, CSE, IT, ECM, CSE(AIML), CSE(DS), AIDS & AIML)	3	1	0	4

Pre-Requisites: Mathematical Knowledge at pre-university level

Course Objectives:

To learn

- 1. Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- 2. Concept of eigen values and eigen vectors and to reduce the quadratic form to canonical form.
- 3. Geometrical approach to the mean value theorems and their application to the mathematical problems.
- 4. Finding maxima and minima of functions of two and three variables.
- 5. Evaluation of multiple integrals and their applications.

Module 1: Matrices: [08L

Rank of a matrix by Echelon form and Normal form – Inverse of Non-singular matrices by Gauss Jordan method. System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations. Gauss Seidel Iteration Method.

Module 2: Eigen values and Eigen vectors:

[10L]

Eigen values – Eigen vectors and their properties – Diagonalization of a matrix – Cayley-Hamilton Theorem (without proof) – Finding inverse and power of a matrix by Cayley-Hamilton Theorem. Quadratic forms and Nature of the Quadratic Forms – Reduction of Quadratic form to canonical form by Orthogonal Transformation.

Module 3: Single Variable Calculus:

[10L]

Limits and Continuity of functions and its properties. Mean value theorems: Rolle's theorem – Lagrange's Mean value theorem with their Geometrical Interpretation and applications – Cauchy's Mean value Theorem – Taylor's and Maclaurin's series (All the theorems without proof).

Curve Tracing: Curve tracing in cartesian coordinates.

Module 4: Multivariable Calculus-I:

[10L]

Definitions of Limit and continuity – Partial Differentiation: Euler's Theorem – Total derivative – Jacobian – Functional dependence & independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

Module 5: Multivariable Calculus-II:

[10L]

Evaluation of Double Integrals (Cartesian and polar coordinates) – change of order of integration (only Cartesian form) – Change of variables for double integrals (Cartesian to polar). Evaluation of Triple Integrals- Change of variables for triple integrals (Cartesian to Spherical and Cylindrical polar coordinates). Applications: Areas by double integrals and volumes by triple integrals.

Text Books

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 45th Edition, 2020.
 - 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2019.

Reference Books

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2020.
- 2. Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki, Thomas' Calculus, 13th Edition, Pearson, Reprint, 2024.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, 8th Edition, 2016.
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand and Company Limited, New Delhi, 2014.

E-Resources

- https://nptel.ac.in/courses/111/108/111108098/
- https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
- https://nptel.ac.in/courses/111/107/111107108/
- https://www.cheric.org/files/education/cyberlecture/e200303/e200303-301.pdf
- https://www.whitman.edu/mathematics/calculus_online/chapter16.html

Course Outcomes:

After learning the contents of this paper, the student must be able to

- **CO1.** Compute the rank of a matrix and analyze the solution of the system of equations.
- **CO2.** Determine Eigenvalues and Eigenvectors of matrices and apply orthogonal transformations to reduce quadratic forms into canonical form.
- **CO3.** Apply the Mean Value Theorems to solve engineering problems.
- **CO4.** Find the extreme values of functions of two variables with/ without constraints.
- CO5. Evaluate the multiple integrals and apply the concept to find areas, volumes.

CO-PO/PSO Mapping

Course	Program Outcomes (POs)/Program Specific Outcomes (PS											(PSOs)		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	1	-	-	1	1	-	2	1	-	2	-	-
CO2	3	2	2	1	-	1	1	-	2	1	-	2	-	-
CO3	3	2	2	-	-	1	1	-	2	1	-	2	-	-
CO4	3	2	1	1	-	1	1	-	2	1	-	2	-	-
CO5	3	2	1	-	-	1	1	1	2	1	-	2	-	-
Average	3	2	1.4	1	-	1	1	1	2	2	-	2	-	-

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)			h: M -I Se	
Course Code:	ADVANCED ENGINEERING PHYSICS	L	Т	Р	С
N1100B	(Common to: CE, EEE, ME, ECE, CSE, IT, ECM, CSE(AIML), CSE(DS), AIDS, AIML)	3	0	0	3

Pre-Requisites: 10+2 Physics

Course Objectives:

The students should be able to

- 1. To study crystal structures, defects, and material characterization techniques like XRD and SEM.
- 2. To understand fundamental concepts of quantum mechanics and their applications in solids and nanomaterials.
- 3. To introduce quantum computing principles, quantum gates, and basic quantum algorithms.
- 4. To learn the properties and applications of magnetic and dielectric materials.
- 5. To explore the working and applications of lasers and fibre optics in modern technology.

UNIT - I: Crystallography & Materials Characterization

[10L]

Introduction: Unit cell, space lattice, basis, lattice parameters; crystal structures, Bravais lattices, packing factor: SC, BCC, FCC; Miller indices, inter-planar distance; defects in crystals (Qualitative): point defects, line defects, surface defects and volume defects. concept of nanomaterials: surface to volume ratio, X -ray diffraction: Bragg's law, powder method, calculation of average crystallite size using Debye Scherrer's formula, scanning electron microscopy (SEM): block diagram, working principle.

UNIT - II: Quantum Mechanics

[10L]

Introduction, de-Broglie hypothesis, Heisenberg uncertainty principle, physical significance of wave function, postulates of quantum mechanics: operators in quantum mechanics, eigen values and eigen functions, expectation value; Schrödinger's time independent wave equation, particle in a 1D box, Bloch's theorem (qualitative), Kronig-Penney model (qualitative): E-k diagram, concepts of group velocity and phase velocity, formation of energy bands, origin of bandgap, classification of solids, concept of discrete energy levels and quantum confinement in nanomaterials.

UNIT - III: Quantum Computing

[9L]

Introduction, linear algebra for quantum computation, Dirac's Bra and Ket notation and their properties, Hilbert space, Bloch's sphere, concept of quantum computer, classical bits, Qubits, multiple Qubit system, quantum computing system for information processing, evolution of quantum systems, quantum measurements, entanglement, quantum gates, challenges and advantages of quantum computing over classical computation, quantum algorithms: Deutsch-Jozsa, Grover.

UNIT - IV: Magnetic and Dielectric Materials

[10L]

Introduction to magnetic materials, origin of magnetic moment-classification of magnetic materials, hysteresis, Weiss domain theory of ferromagnetism, soft and hard magnetic materials, synthesis of ferrimagnetic materials using sol-gel method, applications: magnetic hyperthermia for cancer treatment, magnets for EV, Giant Magneto Resistance (GMR) device.

Introduction to dielectric materials, types of polarization (qualitative): electronics, ionic & orientation; ferroelectric, piezoelectric, pyroelectric materials and their applications: Ferroelectric Random-Access Memory (Fe-RAM), load cell and fire sensor.

UNIT - V: Laser and Fibre Optics

[9L]

Introduction to laser, characteristics of laser, Einstein coefficients and their relations, metastable state, population inversion, pumping, lasing action, Ruby laser, He-Ne laser, Nd:YAG laser, semiconductor diode laser, applications: Bar code scanner, LiDAR for autonomous vehicle. Introduction to fibre optics, total internal reflection, construction of optical fibre, acceptance angle, numerical aperture, classification of optical fibres, losses in optical fibre, applications: optical fibre for communication system, sensor for structural health monitoring.

Text Books

- 1. Walter Borchardt-Ott, Crystallography: An Introduction, Springer.
- 2. Charles Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc.
- 3. Thomas G. Wong, Introduction to Classical and Quantum Computing, Rooted Grove

Reference Books

- 1. Jozef Gruska, Quantum Computing, McGraw Hill
- 2. Michael A. Nielsen & Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press.
- 3. John M. Senior, Optical Fiber Communications Principles and Practice, Pearson Education Limited. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.

E-Resources

- https://shijuinpallotti.wordpress.com/wp-content/uploads/2019/07/optical-fiber communications-principles-and-pr.pdf
- https://www.geokniga.org/bookfiles/geokniga-crystallography_0.pdf
- https://dpbck.ac.in/wp-content/uploads/2022/10/Introduction-to-Solid-State-PhysicsCharles Kittel.pdf
- https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e4p.pdf
- https://www.fi.muni.cz/usr/gruska/qbook1.pdf
- https://profmcruz.wordpress.com/wp-content/uploads/2017/08/quantum-computationand quantum-information-nielsen-chuang.pdf

Course Outcomes

At the end of the course, the student will be able to:

- **CO1.** Analyze crystal structures, identify defects, and apply XRD and SEM techniques for material characterization.
- **CO2.** Apply quantum mechanical principles to explain particle behaviour and energy band formation in solids.
- **CO3.** Understand quantum computing concepts, use quantum gates, and explain basic quantum algorithms.
- **CO4.** Classify magnetic and dielectric materials and explain their properties, synthesis, and applications.
- **CO5.** Explain the principles of lasers and fibre optics and their applications in communication and sensing.

CO-PO/PSO Mapping

Course			Pro	gram	Outcor	nes (P	Os)/Pr	ogran	Spec	ific Out	comes	(PSOs)		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	2	1	ı	ı	i	ı	ı	-	-	ı	-	1	ı
CO2	3	1	2	-	-	-	-	-	-	-	-	-	1	-
CO3	2	1	2	-	-	-	-	-	-	-	-	-	1	ı
CO4	2	2	1	-	-	-	-	-	-	-	-	-	1	-
CO5	2	2	1	-	-	-	-	-	-	_	-	-	2	-
Average	2.2	1.6	1.4	-	-	-	-	-	-	-	-	-	1.2	-

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)			h: M -I Se	
Course Code:	C PROGRAMMING AND DATA STRUCTURES	L	Т	Р	С
N1105B	C PROGRAMMING AND DATA STRUCTURES	3	0	0	3

Pre-Requisites: Mathematical Knowledge at pre-university level

Course Objectives:

Introduce the importance of programming, C language constructs, program development, data structures, searching and sorting.

Unit 1: [10L]

Introduction to Computers – Computer Systems, Computing Environments, Computer Languages, Creating and running programs, Software Development

Introduction to C Language – Background, Simple C programs, Identifiers, Basic data types, Variables, Constants, Input / Output

Structure of a C Program – Operators, Bit-wise operators, Expressions, Precedence and Associatively, Expression Evaluation, Type conversions, Statements.

Unit 2: [8 L]

Statements – if and switch statements, Repetition statements – while, for, do-while statements, Loop examples, other statements related to looping – break, continue, go to, Recursion.

Designing Structured Programs- Functions, basics, user defined functions, inter function communication, standard functions.

Arrays – Concepts, using arrays in C, inter function communication, array applications, two – dimensional arrays, multidimensional arrays

Unit 3: [8 L]

Pointers – Introduction, Pointers for inter function communication, pointers to pointers, compatibility, Pointer Applications – Passing an array to a function, Memory allocation functions, array of pointers Strings – Concepts, C Strings, String Input / Output functions, arrays of strings, string manipulation functions, string / data conversion.

Unit 4: [12 L]

Derived types – The Typedef, enumerated types, Structures – Declaration, definition and initialization of structures, accessing structures, operations on structures, complex structures. Unions – Referencing unions, initializers, unions and structures.

Input and Output – Text vs Binary streams, standard library functions for files, converting file types, File programs – copy, merge files.

Unit 5: [12L]

Sorting- selection sort, bubble sort, insertion sort,

Searching-linear and binary search methods.

Data Structures – Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

Text Books

1. C Programming & Data Structures, B.A.Forouzan and R.F. Gilberg, Third Edition, Cengage Learning.

- 2. Problem Solving and Program Design in C, J.R. Hanly and E.B. Koffman, Fifth Edition, Pearson Education.
- 3. The C Programming Language, B.W. Kernighan and Dennis M.Ritchie, PHI/Pearson Education

Reference Books

- 1. C & Data structures P. Padmanabham, 3rd Edition, B.S. Publications.
- 2. C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press
- 3. Programming in C Stephen G. Kochan, III Edition, Pearson Education.
- 4. C for Engineers and Scientists, H. Cheng, McGraw-Hill International Edition
- 5. Data Structures using C A. M. Tanenbaum, Y. Langsam, and M.J. Augenstein, Pearson Education / PHI
- 6. C Programming & Data Structures, E. Balagurusamy, TMH.
- 7. C Programming & Data Structures, P. Dey, M Ghosh R Thereja, Oxford University Press
- 8. C & Data structures E V Prasad and N B Venkateswarlu, S. Chand & Co.

Course outcomes:

At the end of the course, student will be able to

CO1: Describe the basic concepts of computers and simple C programs using variables, data types, and operators.

CO2: Apply control statements, functions, and arrays to develop structured C programs.

CO3: Use pointers and strings effectively for memory management and data manipulation.

CO4: Implement programs using structures, unions, and perform file operations in C.

CO5: Apply sorting, searching algorithms, and basic data structures like linked lists, stacks, and queues.

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)		B. Tech: ME I Year – I Sem					
Course Code:	ENGINEERING MECHANICS	L	Т	Р	С			
N1105B		3	0	0	3			

Pre-Requisites: Engineering Chemistry, Engineering Physics.

Course Objectives:

The objectives of this course are to

- 1. Explain the resolution of a system of forces, compute their resultant and solve problems using equations of equilibrium
- 2. Perform analysis of bodies lying on rough surfaces.
- 3. Compute the area moment of inertia and mass moment of inertia of standard and composite sections
- 4. Explain kinetics and kinematics of particles, projectiles, curvilinear motion, centroidal motion and plane motion of rigid bodies.
- 5. Explain the concepts of work energy method and its applications to translation, rotation and plane motion.

Module 1: Introduction to Engineering Mechanics

Unit 1: Force Systems: Basic concepts, Rigid Body equilibrium, System of Forces, Parallelogram law, Coplanar Concurrent Forces, Resultant, Moment of Forces and its Application.

Unit 2: Couples and Resultant of Force System: Equilibrium of Force Systems, Free body diagrams, Equations of Equilibrium of Coplanar Systems.

Module 2: Friction and Centre of Gravity

Unit 1: Friction: Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction. Motion of Bodies, Wedge friction, Screw jack and Differential Screw jack.

Unit 2: Centroid and Centre of Gravity: Centroid of Lines, Areas and Volumes from first principle, centroid of composite sections, Centre of Gravity and its implications, Theorem of Pappus.

Module 3: Moment of Inertia

Unit 1: Moment of Inertia: Definition, Area Moment of Inertia, Moment of inertia of Plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections. Product of Inertia, Parallel Axis Theorem, Perpendicular Axis Theorem.

Unit 2: Mass Moment of Inertia: Moment of Inertia of Masses, Radius of Gyration, Transfer Formula for Mass Moments of Inertia, Mass moment of inertia of composite bodies.

Module 4: Dynamics of a Particle

Unit 1: Rectilinear motion, Plane curvilinear motion: Rectangular and Polar coordinates. Relative and constrained motion, Newton's law of motion for a particle (rectangular, path, and polar coordinates).

Unit 2: Work – kinetic energy, power, potential energy. Impulse and momentum: Linear and Angular.

Module 5: Kinetics of Rigid Bodies

Unit 1: Introduction, Types of motion, Instantaneous centre of rotation in plane motion and simple problems, D' Alembert's principle and its applications in plane motion and connected bodies.

Unit 2: Work-Energy Method: Work-Energy principle and its application in plane motion of connected bodies or Systems, Work energy Applied to particle motion, Kinetics of rigid body rotation.

Text Books

- 1. Singer's Engineering Mechanics Statics and Dynamics, Reddy Vijay Kumar K. and J. Suresh Kumar. B.S Publications, 3rd Edition, Rpt. 2024.
- 2. Engineering Mechanics, Shames and Rao, Pearson Education, 1st Edition, 2005

Reference Books

- 1. Vector Mechanics for Engineers Statics and Dynamics, Beer F.P and Johnston E.R Jr., Mc Graw Hill, 12th Edition, 2019.
- 2. Engineering Mechanics, Dumir P.C, Sengupta and Srinivas, Universities Press, 1st Edition, 2020.
- 3. Engineering Mechanics, Hibbeler R.C, Pearson, 14th Edition, 2017.
- 4. Engineering Mechanics, Arshad Noor, Zahid and Goel, Cambridge University Press,1st Edition, 2018.
- 5. Engineering Mechanics, Basudeb Bhattacharyya, Oxford University Press, 2nd Edition, 2014.

Course Outcomes

At the end of the course, the student will be able to:

- **CO1.** Determine resultant of forces acting on a body and analyse equilibrium of a body subjected to a system of forces.
- **CO2**. Solve problem of bodies subjected to friction.
- **CO3**. Find the location of centroid and calculate moment of inertia of a given section.
- **CO4**. Understand the kinetics and kinematics of a body undergoing rectilinear, curvilinear, rotatory motion and rigid body motion.
- **CO5**. Solve problems using work energy equations for translation, fixed axis rotation and plane motion.

CO-PO/PSO Mapping

Course			Pro	gram (Outcor	nes(P	Os)/Pr	ogram	Speci	fic Out	comes(PSOs)		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	2	1	1	1	1	1	ı	ı	-	2	1	1
CO2	3	3	2	1	-	-	-	-	-	-	-	2	2	1
CO3	3	3	2	1	-	-	-	-	-	-	-	2	2	1
CO4	3	3	2	2	-	-	-	-	-	-	-	2	2	2
CO5	3	3	2	2	-	-	-	-	-	-	-	2	2	1
Average	3	3	2	1.4	-	-	-	-	-	-	-	2	1.8	1.2

AY: 2025-26	J. B. Institute of Engineering and Technology	В	. Tec	h: M	E
Onwards	(UGC Autonomous)		ear -	- I Se	em .
Course Code:	ENGLISH FOR SKILL ENHANCEMENT	L	Т	Р	С
N1100D	(Common to all Engineering branches)	3	0	0	3

Pre-Requisites: NIL

Course Objectives:

This course will enable the students to:

- 1. Improve their vocabulary.
- 2. Use appropriate sentence structures in their oral and written communication.
- 3. Develop their reading and study skills.
- 4. Equip students to write paragraphs, essays, precis and draft letters.
- 5. Acquire skills for technical report writing.

Theme: Perspectives

Lesson on 'The Generation Gap' by Benjamin M. Spock from the prescribed textbook titled English for the Young in the Digital World published by Orient Black Swan Pvt. Ltd.

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes - Words Often

Misspelt - Synonyms and Antonyms

Grammar: Identifying Common Errors in Writing with Reference to Parts of Speech particularly

Articles and Prepositions — Degrees of Comparison

Reading: Reading and Its Importance- Sub Skills of Reading — Skimming and Scanning.

Writing: Sentence Structures and Types -Use of Phrases and Clauses in Sentences.

Importance of Proper Punctuation- Techniques for Writing Precisely —Nature and

Style of Formal Writing.

Module – 2: (9L)

Theme: Digital Transformation

Lesson on 'Emerging Technologies' from the prescribed textbook titled English for

the Young in the Digital World published by Orient BlackSwan Pvt. Ltd.

Vocabulary: Homophones, Homonyms and Homographs

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement

and Subject-verb Agreement.

Reading: Reading Strategies-Guessing Meaning from Context — Identifying Main Ideas —

Exercises for Practice

Writing: Paragraph Writing — Types, Structures and Features of a Paragraph - Creating

Coherence — Linkers and Connectives - Organizing Principles in a Paragraph — Defining- Describing People, Objects, Places and Events — Classifying- Providing

Examples or Evidence - Essay Writing - Writing Introduction and Conclusion.

Module - 3: (8L)

Theme: Attitude and Gratitude

Poems on 'Leisure' by William Henry Davies and 'Be Thankful' - Unknown Author from the prescribed textbook titled English for the Young in the Digital World

published by Orient BlackSwan Pvt. Ltd.

Vocabulary: Words Often Confused - Words from Foreign Languages and their Use in English.

Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and

 ${\it Tenses. Reading: Sub-Skills of Reading -- Identifying Topic Sentence and Providing}$

Supporting Ideas - Exercises for Practice.

Writing: Format of a Formal Letter-Writing Formal Letters E.g.., Letter of Complaint, Letter

of Requisition, Job Application with CV/Resume —Difference between Writing a

Letter and an Email - Email Etiquette.

Module – 4: (8L)

Theme: Entrepreneurship

Lesson on 'Why a Start-Up Needs to Find its Customers First by Pranav Jain from the prescribed textbook titled English for the Young in the Digital World published

by Orient BlackSwan Pvt. Ltd.

Vocabulary: Standard Abbreviations in English — Inferring Meanings of Words through Context

Phrasal Verbs — Idioms.

Grammar: Redundancies and Clichés in Written Communication — Converting Passive to

Active Voice and Vice-Versa.

Reading: Prompt Engineering Techniques— Comprehending and Generating Appropriate

Prompts - Exercises for Practice

Writing: Writing Practices- Note Making-Précis Writing.

Module – 5: (8L)

Theme: Integrity and Professionalism

Lesson on 'Professional Ethics' from the prescribed textbook titled English for the

Young in the Digital World published by Orient BlackSwan Pvt. Ltd.

Vocabulary: Technical Vocabulary and their Usage— One Word Substitutes — Collocations.

Grammar: Direct and Indirect Speech - Common Errors in English (Covering all the other

aspects of grammar which were not covered in the previous units)

Reading: Survey, Question, Read, Recite and Review (SQ3R Method) — Inferring the Meaning

and Evaluating a Text- Exercises for Practice

Writing: Report Writing - Technical Reports- Introduction — Characteristics of a Report —

Categories of Reports Formats- Structure of Reports (Manuscript Format) -Types of

Reports - Writing a Technical Report.

Text Books

1. Board of Editors. 2025. English for the Young in the Digital World. Orient Black Swan Pvt. Ltd.

Reference Books

- 1. Swan, Michael. (2016). Practical English Usage. Oxford University Press. New Edition.
- 2. Karal, Rajeevan. 2023. English Grammar Just for You. Oxford University Press. New Delhi.
- 3. 2024. Empowering with Language: Communicative English for Undergraduates. Cengage Learning India Pvt. Ltd. New Delhi.
- 4. Sanjay Kumar & Pushp Lata. 2022. Communication Skills A Workbook. Oxford University Press. New Delhi.
- 5. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
- 6. Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students. Mc Graw-Hill Education India Pvt. Ltd.

E-Resources

 https://mdu.ac.in/UpFiles/UpPdfFiles/2021/Mar/4_03-02-2021_11-35-30_English-I%20BA1001-1).pdf

- 2. https://www.swansea.ac.uk/media/Leisure---W-H-Davies.pdf
- 3. https://www.entrepreneur.com/en-in/starting-a-business/overcome-this-grave-mistake-and-ensure-guaranteed-success/327761
- 4. Cambridge English
- 5. BBC Learning English Learn English with BBC Learning English Homepage

Course Outcomes

At the end of the course, Students will be able to:

- **CO1.** Choose appropriate vocabulary in their oral and written communication.
- **CO2.** Demonstrate their understanding of the rules of functional grammar and sentence structures.
- **CO3.** Develop comprehension skills from known and unknown passages.
- CO4. Write paragraphs, essays, précis and draft letters.
- **CO5.** Write abstracts and reports in various contexts.

CO-PO/PSO Mapping

Course			Prog	gram C	utcon	nes (Po	Os)/Pr	ogram	Speci	fic Out	comes	(PSOs)		
Outcomes	РО	РО	РО	РО	PO	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	-	-	-	-	-	-	-	-	2	2	-	3	-	-
CO2	-	-	-	-	-	-	-	-	2	2	-	3	-	-
CO3	-	-	-	-	-	-	-	-	2	2	-	3	-	-
CO4	-	-	-	-	-	-	-	-	2	2	-	3	-	-
CO5	-	-	-	-	-	-	-	-	2	2	-	3	-	-
Average	-	-	-	-	-	-	-	-	2	2	-	3	-	-

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)		_	ch: M - I S	
Course Code:	ADVANCED ENGINEERING PHYSICS LAB	L	Т	Р	С
N11001	Common to: CE, EEE, ME, ECE, CSE, IT, ECM, CSE(AIML), CSE(DS), AIDS, AIML	0	0	2	1

Pre-Requisites: 10+2 Physics basic concepts.

Course Objectives:

- 1. To provide practical exposure to advanced concepts in solid-state and modern physics.
- 2. To synthesize and study the physical properties of materials like semiconductors, ferromagnetic, and ferroelectric substances.
- 3. To perform semiconductor characterization using Hall effect and band gap experiments.
- 4. To explore the working principles of lasers and optical fibers through hands-on experiments.
- 5. To develop skills in data analysis, interpretation, and scientific reporting.

List of Experiments:

- 1. Synthesis of magnetite (Fe3O4) powder using sol-gel method.
- 2. Determination of energy gap of a semiconductor.
- 3. Determination of Hall coefficient and carrier concertation of a given semiconductor.
- 4. Determination of magnetic moment of a bar magnet and horizontal earth magnetic field.
- 5. Study of B-H curve of a ferro magnetic material.
- 6. Study of P-E loop of a given ferroelectric crystal.
- 7. Determination of dielectric constant of a given material.
- 8. Determination of Curie's temperature of a given ferroelectric material.
- 9. A) Determination of wavelength of a laser using diffraction grating.
 - B) Study of V-I & L-I characteristics of a given laser diode.
- 10. A) Determination of numerical aperture of a given optical fibre.
 - B) Determination of bending losses of a given optical fibre.

Note: Any 8 experiments are to be performed.

Text Books

- 1. Dr. Narendra, L. Mathakari, "Experiments in Applied Physics" (Physics Lab Manual 4th edition),
- 2. "Advanced Engineering Physics Lab Resources" By Department of Physics JBIET.

Course Outcomes

At the end of the course, students will be able to

- **CO1.** Synthesize and analyze nanomaterials such as magnetite (Fe₃O₄) using chemical methods.
- **CO2.** Determine key electrical, magnetic, and optical properties of semiconductors and other functional materials.
- **CO3.** Characterize semiconductors using Hall effect and energy gap measurement techniques.
- **CO4.** Demonstrate working knowledge of laser systems and optical fiber parameters through experimental study.
- **CO5.** Apply scientific methods for accurate data collection, analysis, and technical report writing.

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech CSE					
Onwards	(UGC Autonomous)	I	Year-	-I Se	m		
Course Code:	C PROGRAMMING AND DATA STRUCTURES LAB	L	Т	Р	С		
N11052	C PROGRAMMING AND DATA STRUCTURES LAB		0	2	1		

Pre-Requisites: NIL

Course Objectives:

- 1. To introduce students to basic manufacturing processes and workshop practices.
- 2. To provide hands-on training in carpentry, fitting, welding, sheet metal, and machining
- 3. To develop skills in using hand tools and measuring instruments.
- 4. To enhance safety awareness and proper handling of workshop equipment.
- 5. To build a foundational understanding of industrial production and fabrication.

List of Experiments:

- 1. Write a C program to find the sum of individual digits of a positive integer.
- 2. Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- 3. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
- 4. Write a C program to find the roots of a quadratic equation.
- 5. Write a C program to find the factorial of a given integer.
- 6. Write a C program to find the GCD (greatest common divisor) of two given integers.
- 7. Write a C program to solve Towers of Hanoi problem.
- 8. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)
- 9. Write a C program to find both the largest and smallest number in a list of integers.
- 10. Write a C program that uses functions to perform the following:
 - i) Addition of Two Matrices
 - ii) Multiplication of Two Matrices
- 11. Write a C program that uses functions to perform the following operations:
 - To insert a sub-string in to a given main string from a given position.
 - ii) To delete n Characters from a given position in a given string.
- 12. Write a C program to determine if the given string is a palindrome or not
- 13. Write a C program that displays the position or index in the string S where the string T begins, or 1 if S doesn't contain T.
- 14. Write a C program to count the lines, words and characters in a given text.
- 15. Write a C program to generate Pascal's triangle.
- 16. Write a C program to construct a pyramid of numbers.
- 17. Write a C program that uses functions to perform the following operations:
 - i) Reading a complex number
 - ii) Writing a complex number
 - iii) Addition of two complex numbers
 - iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

18.

- i. Write a C program which copies one file to another.
- ii. Write a C program to reverse the first n characters in a file. (Note: The file name and n are specified on the command line.)

19.

- i. Write a C program to display the contents of a file.
- Write a C program to merge two files into a third file (i.e., the contents of the first file ii. followed by those of the second are put in the third file)
- 20. Write a C program that uses functions to perform the following operations on singly linked list.:
 - Creation
- ii) Insertion iii) Deletion
- iv) Traversal
- 21. Write C programs that implement stack (its operations) using
 - i) Arrays
- ii) Pointers
- 22. Write C programs that implement Queue (its operations) using
 - i) Arrays
- ii) Pointers
- 23. Write a C program that implements the following sorting methods to sort a given list of integers in ascending order i) Bubble sort ii) Selection sort iii) Insertion sort
- 24. Write C programs that use both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers:
 - i) Linear search
- ii) Binary search

Text Books

- 1. C Programming & Data Structures, B.A. Forouzan and R. F. Gilberg, Third Edition, Cengage Learning.
- 2. Let us C, Yeswanth Kanitkar
- 3. C Programming, Balaguruswamy

Course outcomes:

- 1. Understand the basic manufacturing processes and operations.
- 2. Use hand tools and equipment safely and efficiently.
- 3. Perform basic operations in carpentry, fitting, welding, sheet metal work, and machining
- 4. Read and interpret workshop drawings
- 5. Develop teamwork, time management, and quality awareness in a workshop environment.

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)	B. Tech: ME I Year – I Sem				
Course Code:	ENGLISH LANGUAGE COMMUNICATION SKILLS LAB	L	Т	Р	С	
1411003	(Common to all Engineering branches)	0	0	2	1	

Pre-Requisites: NIL

Course Objectives

To train students:

- 1. To enable students develop their active listening skills.
- 2. To equip students with necessary training in listening, so that they can comprehend the speech of people from different linguistic backgrounds.
- 3. To improve their pronunciation and neutralize accent.
- 4. To enable students express themselves fluently and appropriately.
- 5. To practise speaking in social and professional contexts.

English Language and Communication Sills Lab (ELCS) will have two parts:

- a) Computer Assisted Language Learning (CALL) Lab:
- b) Interactive Communication Skills (ICS) Lab:

Module 1: (9L)

CALL Lab:

Instruction: Speech Sounds-Listening Skill - Importance — Purpose - Types- Barriers-

Active Listening.

Practice: Listening to Distinguish Speech Sounds (Minimal Pairs) - Testing Exercises

ICS Lab:

Diagnostic Test: Activity titled 'Express Your View'

Instruction: Spoken and Written language - Formal and Informal English - Greetings -

Introducing Oneself and Others

Practice: Any Ice-Breaking Activity

Module 2: (9L)

CALL Lab:

Instruction: Listening vs. Hearing - Barriers to Listening

Practice: Listening for General Information - Multiple Choice Questions - Listening

Comprehension Exercises

ICS Lab:

Instruction: Features of Good Conversation — Strategies for Effective Communication

Practice: Role Play Activity - Situational Dialogues —Expressions used in Various

Situations —Making Requests and Seeking Permissions — Taking Leave -

Telephone Etiquette

Module 3: (9L)

CALL Lab:

Instruction: Errors in Pronunciation — Tips for Neutralizing Mother Tongue Influence (MTI)

Practice: Differences between British and American Pronunciation —Listening

Comprehension Exercises

ICS Lab:

Instruction: Describing Objects, Situations, Places, People and Events

Practice: Picture Description Activity — Looking at a Picture and Describing Objects,

Situations, Places, People and Events

Module 4: (9L)

CALL Lab:

Instruction: Techniques for Effective Listening

Practice: Listening for Specific Details - Listening - Gap Fill Exercises - Listening

Comprehension Exercises (It is essential to identify a suitable passage with

exercises for practice.)

ICS Lab:

Instruction: How to Tell a Good Story - Story Star- Sequencing-Creativity

Practice: Activity on Telling and Retelling Stories – Collage

Module 5: (9L)

CALL Lab:

Instruction: Identifying the literal and implied meaning

Practice: Listening for Evaluation - Write the Summary — Listening Comprehension

Exercises

ICS Lab:

Instruction: Understanding Non-Verbal Communication **Practice:** Silent Speech - Dumb Charades Activity

Post-Assessment Test on 'Express Your View'

Text Books

1. Board of Editors. (2016). ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities. Orient BlackSwan Pvt. Ltd.

Reference Books

- 2. Shobha, KN & Rayen, J. Lourdes. (2019). Communicative English A workbook. Cambridge University Press
- 3. Mishra, Veerendra et al. (2020). English Language Skills: A Practical Approach. Cambridge University Press
- 4. (2022). English Language Communication Skills Lab Manual cum Workbook. Cengage Learning India Pvt. Ltd.
- 5. Ur, Penny and Wright, Andrew. 2022. Five Minute Activities A Resource Book for Language Teachers. Cambridge University Press.

E-Resources

- 1. https://dictionary.cambridge.org/dictionary/english/
- 2. https://www.oxfordlearnersdictionaries.com/definition/english/
- 3. https://www.scribd.com/doc/310229959/English-in-Mind-1-Workbook-110-pdf
- 4. https://ia801409.us.archive.org/27/items/cambridge-english-pronunciation-in-use-elementary/Cambridge%20-%20English%20Pronunciation%20in%20Use%20-%20Elementary_text.pdf
- 5. https://dn720003.ca.archive.org/0/items/4.-cambridge-english-vocabulary-in-use-advanced-3rd
 - edition/4.%20Cambridge%20English%20Vocabulary%20in%20Use%20(Advanced)%203rd%20Edition.pdf

Course Outcomes

At the end of the course, Students will be able to:

CO1: Listen actively and identify important information in spoken texts

CO2: Interpret the speech and infer the intention of the speaker

CO3: Improve their accent for intelligibility

CO4: Speak fluently with clarity and confidence

CO5: Use the language in real life situations

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)													
Outcomes	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS	
Guccomes	1	2	3	4	5	6	7	8	9	10	11	12	1	02	
CO1	-	-	-	-	-	-	-	-	3	3	-	2	-	-	
CO2	-	-	-	-	-	-	-	-	3	3	-	2	-	-	
CO3	-	-	-	-	-	-	-	-	3	3	-	2	-	-	
CO4	-	-	-	-	-	-	-	-	3	3	-	2	-	-	
CO5	ı	-	-	-	-	-	1	-	3	3	ı	2	-	-	
Average	-	-	-	-	-	-	•	-	3	3	-	2	-	-	

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous) B. Tech I Year - 1						
Course Code:	I ENGINEERING WORKSHOP	L	T	Р	С		
N11031		0	0	2	1		

Pre-Requisites: Practical skill

Course Objectives:

- 1. To introduce students to basic manufacturing processes and workshop practices.
- 2. To provide hands-on training in carpentry, fitting, welding, sheet metal, and machining
- 3. To develop skills in using hand tools and measuring instruments.
- 4. To enhance safety awareness and proper handling of workshop equipment.
- 5. To build a foundational understanding of industrial production and fabrication.

1. TRADES FOR EXERCISES:

At least two exercises from each trade:

i. Carpentry: T- Lap Joint, Dovetail Joint, Mortise and Tenon Joint

ii. Fitting: V- Fit, Square Fit and Straight Fit

iii. Tin Smithy: Square Tin, Rectangular Tray and Conical Funnel

iv. Foundry: Preparation of Green Sand Mould using Single Piece and Split Pattern

v. Welding Practice: Arc Welding

vi. House wiring: Parallel and Series, Two-way Switch and Tube Light

vii. Black Smithy: Round to Square, Fan Hook and S- Hook

2. TRADES FOR DEMONSTRATION AND EXPOSURE:

3D Printing and Machine Shop

TEXT BOOKS:

- 1. Workshop Practice, B. L. Juneja, Cengage Learning India, 1st edition, 2015.
- 2. Workshop Practice Manual, K. Venkata Reddy, BS Publication, 6th Edition, Rpt. 2025.

REFERENCE BOOKS:

1. Workshop Manual, K. Venugopal, Anuradha Publications, 2012th edition, 2012.

Course Outcomes:

At the end of the course, the student will be able to:

- **CO1.** Understand the basic manufacturing processes and operations.
- CO2. Use hand tools and equipment safely and efficiently.
- CO3. Perform basic operations in carpentry, fitting, welding, sheet metal work, and machining
- **CO4.** Read and interpret workshop drawings
- CO5. Develop teamwork, time management, and quality awareness in a workshop environment.

CO-PO/PSO Mapping

Course		Pro	gram	Outo	omes	(PO	s)/Pr	ogran	n Spe	cific O	utcon	nes (P	SOs)	
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	-	-	-	-	-	-	-	-	2	2	2	3	3	3
CO2	-	-	-	-	-	-	-	-	2	2	2	3	3	1
CO3	-	-	-	-	-	-	-	-	2	2	2	3	3	3
CO4	-	-	-	-	-	-	-	-	2	2	2	3	3	3
CO5	-	-	-	-	-	-	-	-	2	2	2	3	3	2
Average	-	-	-	-	-	-	-	-	2	2	2	3	3	2.4

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)	B. Tech: ME I Year – II Sen					
Course Code:	ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS	L	Т	Р	С		
N1200A	(Common to: CE, EEE, ME, ECE, CSE, IT, ECM, CSE(AIML), CSE(DS), AIDS & AIML)	3	0	0	3		

Pre-Requisites: Mathematical Knowledge at pre-university level

Course Objectives:

To learn

- 1. Methods of solving the differential equations of first and higher order.
- 2. Concept, properties of Laplace transforms.
- 3. Solving ordinary differential equations using Laplace transforms techniques.
- 4. The physical quantities involved in engineering field related to vector valued functions
- 5. The basic properties of vector valued functions and their applications to line, surface and volume integrals

Module 1: First Order Ordinary Differential Equations:

[08L]

Exact differential equations – Equations reducible to exact differential equations – linear and Bernoulli's equations – Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling – Law of natural growth and decay.

Module 2: Ordinary Differential Equations of Higher Order:

[10L]

Higher order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , $\sin ax$, $\cos ax$, polynomials in x, $e^{ax}V(x)$ and x V(x) – Method of variation of parameters.

Module 3: Laplace Transforms:

[10L]

Laplace Transforms: Laplace Transform of standard functions – First shifting theorem – Laplace transforms of functions multiplied by 't' and divided by 't' – Laplace transforms of derivatives and integrals of function – Evaluation of integrals by Laplace transforms – Laplace transform of special functions (Unit step function, Dirac delta function and Periodic functions) – Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

Module 4: Vector Differentiation:

[10L]

Vector point functions and scalar point functions – Gradient – Divergence and Curl – Directional derivatives – Scalar potential functions – Solenoidal and Irrotational vectors - Vector Identities (without proofs).

Module 5: Vector Integration:

[10L]

Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications.

Text Books

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 45th Edition, 2020.
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2019.

Reference Books

1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2020.

- 2. Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki, Thomas' Calculus, 13th Edition, Pearson, Reprint, 2024.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, 8th Edition, 2016.
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand and Company Limited, New Delhi, 2014.

E-Resources

- https://nptel.ac.in/courses/111108098
- https://www.math.hkust.edu.hk/~machas/differential-equations.pdf
- https://engineeringmath.online
- https://www.cheric.org
- https://www.whitman.edu/mathematics/calculus_online

Course Outcomes:

After learning the contents of this paper, the student must be able to

CO1: Identify whether the given differential equation of first order is exact or not.

CO2: Solve higher differential equation and apply the concept of differential equation to real world problems.

CO3: Use the Laplace Transforms techniques for solving Ordinary Differential Equations.

CO4: Find the gradient, divergence, curl and its physical interpretations.

CO5: Evaluate the Line, Surface and Volume integrals and converting them from one to another.

CO-PO/PSO Mapping

Course			Prog	gram (Outcon	nes (P	Os)/Pr	ogram	Spec	ific Out	comes(PSOs)		
Outcomes	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
0 0.00011100	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	2	1	1	1	1	1	ı	2	1	ı	2	1	-
CO2	3	2	2	1	ı	1	1	ı	2	1	ı	2	ı	-
CO3	3	2	2	ı	ı	1	1	ı	2	1	ı	2	ı	-
CO4	3	2	1	1	-	1	1	ı	2	1	-	2	-	-
CO5	3	2	1	-	-	1	1	1	2	1	-	2	-	-
Average	3	2	1.4	1	-	1	1	1	2	1	•	2	•	-

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)		B. Tech: ME I Year-II Sem					
Course Code:	APPLIED CHEMISTRY	L	Т	Р	С			
N1200E	(CE, ME)	3	0	0	3			

Pre-Requisites: Chemistry Knowledge at pre-university level

Course Objectives:

- 1. To develop adaptability to new advances in Engineering Chemistry and acquire the essential skills to become a competent engineering professional.
- 2. To understand the industrial significance of water treatment, fundamental principles of battery chemistry, and the impact of corrosion along with its control methods for structural protection.
- 3. To impart foundational knowledge of various energy sources and their practical applications in engineering.
- 4. To equip students with an understanding of smart materials, biosensors, and analytical techniques applicable in engineering, environmental, and biomedical fields.

Module 1: Water and its treatment:

[11L]

Introduction, types of hardness and units—Estimation of hardness of water by complexometric method-Numerical problems. Potable water and its specifications (WHO) - Steps involved in the treatment of potable water — Disinfection of potable water by chlorination and break-point chlorination. Defluoridation-Nalgonda technique.

Boiler troubles: Scales, Sludges and Caustic embrittlement. Internal treatment of boiler feed water - Calgon conditioning, Phosphate conditioning, Colloidal conditioning. External treatment methods - Softening of water by ion- exchange processes. Desalination of brackish water - Reverse osmosis.

Module 2: Electrochemistry and Corrosion:

[12L]

Introduction - Electrode potential, standard electrode potential, types of electrodes, Nernst equation (no derivation), Galvanic cell, cell representation, EMF of cell- Numerical problems. Reference electrodes - Primary reference electrode - Standard Hydrogen Electrode (SHE), Secondary reference electrode - Calomel electrode. Determination of pH of an unknown solution using SHE and Calomel electrode.

Corrosion: Introduction - Definition, causes and effects of corrosion - Theories of corrosion, chemical and electrochemical corrosion - Mechanism of electrochemical corrosion, Types of corrosion: galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion - Nature of the metal, Nature of the corroding environment. Corrosion control methods - Cathodic protection Methods - Sacrificial anode and impressed current methods.

Module 3: Energy Sources:

[9L]

Batteries: Introduction – Classification of batteries - Primary, secondary and reserve batteries with examples. Construction, working and applications of Zn-air and Lithium-ion battery. Fuel Cells – Differences between a battery and a fuel cell, construction and applications of Direct Methanol Fuel Cell (DMFC).

Fuels: Introduction and characteristics, Calorific value of fuel - HCV, LCV- Dulongs formula - Numerical problems.

Fossil fuels: Introduction, classification, Petroleum - Refining of Crude oil, Cracking - Moving bed catalytic cracking. LPG and CNG - composition and uses.

Synthetic Fuels: Fischer-Tropsch process, Introduction and applications of Hythane and Green Hydrogen.

Module 4: Polymers:

[10L]

Definition, classification of polymers: Based on origin and tacticity with examples - Types of polymerization - Addition (free radical addition mechanism) and condensation polymerization.

Plastics, Elastomers and Fibers: Definition and applications (PVC, Buna-S, Nylon-6,6). Themoplastics and thermo setting plastics, Fiber reinforced plastics (FRP).

Conducting polymers: Definition and classification with examples - Mechanism of conduction in trans- polyacetylene and applications of conducting polymers.

Biodegradable polymers: Polylactic acid(PLA) and its applications.

Module 5: Applications of Materials:

[8]

Cement: Portland cement, its composition, setting and hardening.

Phase rule: Definition – Phase, component, degrees of freedom. Phase rule equation. Phase diagrams - One component system - water. Two component system - Lead silver system.

Lubricants: Definition and characteristics of a good lubricant – thin film mechanism of lubrication, properties of lubricants - viscosity, cloud and pour point, flash and fire point.

Interpretative spectroscopic applications of UV-Visible spectroscopy for Analysis of pollutants in dye industry, IR spectroscopy in night vision-security, Pollution Under Control-CO sensor (Passive Infrared detection).

TEXT BOOKS:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010.
- 2. Engineering Chemistry by Rama Devi, Dr. P. Aparna and Rath, Cengage learning, 2025.

REFERENCE BOOKS:

- 1. Engineering Chemistry: by Thirumala Chary Laxminarayana & Shashikala, Pearson Publications (2020).
- 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi 2011.
- 3. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi 2015.
- 4. Engineering Analysis of Smart Material Systems by Donald J. Leo, Wiley, 2007.
- 5. Challenges and Opportunities in Green Hydrogen by Editors: Paramvir Singh, Avinash Kumar Agarwal, Anupma Thakur, R.K Sinha.
- 6. Raman Spectroscopy in Human Health and Biomedicine, https://www.worldscientific.com/doi/epdf/10.1142/13094

E-Resources:

- 1. https://doi.org/10.1142/13094 | October 2023
- https://archive.org/details/EngineeringChemistryByShashiChawla/page/n11/mode/2u

Course **Outcomes**:

At the end of the course, the student will be able to:

CO1: Understand the fundamental properties of water and its applications in both domestic and industrial purposes.

CO2: Gain basic knowledge of electrochemical processes and their relevance to corrosion and its control methods.

CO3: Comprehend the significance and practical applications of batteries and various energy sources, enhancing their potential as future engineers and entrepreneurs.

CO4: Learn the basic concepts and properties of polymers, lubricants and other

engineering materials.

CO5: Apply the principles of UV-Visible, IR spectroscopy and Raman spectroscopy in analyzing pollutants in dye industries and biomedical applications.

CO-PO/PSO Mapping

Course			Prog	gram (Outcor	nes (P	Os)/Pr	ogran	Spec	ific Out	comes(PSOs)		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	-	ı	-	3	2	ı	ı	ı	-	3	-	-
CO2	3	1	-	-	-	3	2	-	-	-	-	3	-	-
CO3	3	1	-	-	-	3	3	-	-	-	-	3	-	-
CO4	2	-	-	-	-	3	2	-	-	-	-	2	-	-
CO5	3	-	-	-	-	2	3	-	-	-	-	1	-	-
Average	2.8	1.3	-	-	-	2.8	2.4	-	-	-	-	2.4	-	-

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME							
Onwards	(UGC Autonomous)	I	ear-	II Se	m				
Course Code:	PYTHON PROGRAMMING	L	Т	Р	С				
N1205B	PTTHON PROGRAMMING	3	0	0	3				

Pre-Requisites: Basic knowledge of computer fundamentals, C programming

Course Objectives:

Introduce the fundamentals of Python programming for problem-solving.

- 1. Develop skills to write structured, modular, and efficient Python code.
- 2. Enable students to use Python's built-in data structures and libraries effectively.
- 3. Provide knowledge on file handling, exception handling, and object-oriented programming in Python.
- 4. Equip students with the ability to apply Python for real-world applications including data processing and automation.

Unit 1: Introduction to Python and Basics of Programming

[10L]

Introduction to Python: Features, Applications, Installation, IDEs, Python Syntax, Indentation, Comments, Variables, Data Types, Type Casting, Operators: Arithmetic, Relational, Logical, Assignment, Membership, Identity, Bitwise, Input/Output functions (input(), print()), Control Structures: if, if-else, if-elif-else, Nested Conditions, Looping: for, while, Nested Loops, break, continue, pass.

Unit 2: Data Structures in Python

[8 L]

Strings: Creation, Indexing, Slicing, Methods, String Formatting, Lists: Creation, Indexing, Slicing, List Comprehension, Methods, Tuples: Properties, Indexing, Methods, Sets: Creation, Operations, Methods, Dictionaries: Creation, Access, Methods, Dictionary Comprehension, Iterating over data structures.

Unit 3: Functions and Modules

[8 L]

Functions: Defining, Calling, Parameters, Return Values, Types of Arguments: Positional, Keyword, Default, Variable Length, Scope of Variables: Local and Global, Lambda Functions, Map, Filter, Reduce, Recursion in Python, Modules: Importing, Creating User-defined Modules, Standard Modules (math, random, datetime), Packages in Python.

Unit 4: File Handling and Exception Handling

[12 L]

File Handling: Opening, Reading, Writing, Appending, File Modes, File Methods, Working with CSV and JSON Files, Exception Handling: try, except, else, finally, Built-in Exceptions, Raising Exceptions, Introduction to Regular Expressions (re module).

Unit 5: Object-Oriented Programming and Applications

[12L]

OOP Basics: Classes, Objects, Attributes, Methods, Constructor (init), self keyword, Inheritance: Single, Multiple, Multilevel, Hierarchical, Method Overriding, Method Overloading (conceptual), Encapsulation and Polymorphism, Application Development: Data Processing Script, Basic Calculator, File Organizer, Simple Data Analysis with pandas.

Text Books

- 1. Python Programming: Using Problem Solving Approach by Reema Thareja.
- 2. Python Crash Course by Eric Matthes, Learning Python by Mark Lutz.

Reference Books

1. Introduction to Python Programming by Gowrishankar S., Veena A.

- 2. Python Cookbook by David Beazley and Brian K. Jones.
- 3. Fluent Python by Luciano Ramalho, Automate the Boring Stuff with Python by Al Sweigart.

Course outcomes:

CO1: Write Python programs using variables, operators, expressions, and control structures.

CO2: Implement programs using built-in data structures such as lists, tuples, sets, and dictionaries.

CO3: Apply modular and object-oriented programming principles in Python.

CO4: Use file handling, exception handling, and Python libraries for problem-solving.

CO5: Develop small-scale Python applications for automation and data manipulation.

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)			:h: M II Se	
Course Code:	ELEMENTS OF ELECTRICAL AND ELECTRONICS	L	Т	Р	C
N1202B	ENGINEERING (CE &ME)	3	0	0	3

Pre-Requisites: Mathematics

COURSE OBJECTIVES

- To understand the fundamental laws of electrical circuits and analyze AC/DC circuits using phasor and power concepts.
- 2. To learn the components of LT switchgear, types of cables, earthing systems, and methods of energy management.
- 3. To study the construction, working principles, equations, and performance of transformers, DC machines, and induction motors.
- 4. To comprehend the characteristics and applications of diodes, rectifiers, and filters.
- 5. To understand the construction, operation, and configurations of BJTs and FETs for amplification.

UNIT 1:

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL and KCL, analysis of simple circuits with dc excitation.

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits, Three phase balanced circuits, voltage and current relations in star and delta connections.

UNIT 2:

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, necessity of earthing, types. Types of Batteries, important characteristics Elementary calculations for energy consumption, power factor improvement.

UNIT 3:

Electrical Machines: Construction and working principle of Single-phase transformer, equivalent circuit, e.m.f. equation, losses in transformers, efficiency, Three phase transformer connections. Construction and working principle of DC generators, EMF equation, working principle of DC motors, Torque equations and Speed control of DC motors, Construction and working principle of Three phase Induction motor.

UNIT 4:

P-N Junction and Zener Diode: Principle of Operation Diode equation, Volt, Ampere characteristics, Temperature dependence, Ideal versus practical, Static and dynamic resistances, Equivalent circuit, Zener diode characteristics and applications.

Rectifiers and Filters: P-N junction as a rectifier, Half Wave Rectifier, Ripple Factor, Full Wave Rectifier, Bridge Rectifier, Harmonic components in Rectifier Circuits, Filters – Inductor Filters, Capacitor Filters, L- section Filters, π- section Filters.

UNIT 5:

Bipolar Junction Transistor (BJT): Construction, Principle of Operation, Amplifying Action, Common Emitter, Common Base and Common Collector configurations, Comparison of CE, CB and CC configurations.

Field Effect Transistor (FET): Construction, Principle of Operation, Comparison of BJT and FET, Biasing FET.

TEXT BOOKS

- 1. Basic Electrical and electronics Engineering, M S Sukija and TK Nagasarkar, Oxford University, 1st Edition, 2012.
- 2. Basic Electrical and electronics Engineering, D P Kothari and I J Nagarath, McGraw Hill Education, 2nd Edition, 2020.

REFERENCE BOOKS

- 1. Electronic Devices and Circuits, R. L. Boylestad and Louis Nashelsky, PEI and PHI,9th Edition,2006.
- 2. Millman's Electronic Devices and Circuits, J. Millman, C. C. Halkias and Satyabrata Jit, TMH, 2nd Edition, 1998.
- 3. Engineering Circuit Analysis, William Hayt and Jack E. Kemmerly, McGraw Hill, 6th Edition, 1971.
- 4. Linear circuit analysis, Raymond A. De Carlo and Pen, Min, Lin, Oxford University Press, 2nd edition, 2004.
- 5. Network Theory, N. C. Jagan and C. Lakshmi Narayana, McGraw Hill, 2nd Edition, 2005.
- 6. Network Theory, Sudhakar and Shyam Mohan Palli, Tata McGraw Hill, 2nd Edition, 2011.
- 7. Fundamentals of Electrical Engineering, L. S. Bobrow, Oxford University Press, 12th edition, 2003.

E-RESOURCES

- 1. https://onlinecourses.nptel.ac.in/noc24_ee125/preview
- 2. https://nptel.ac.in/courses/108105155

COURSE OUTCOMES

At the end of the course, the student will be able to:

- 1. Apply KVL, KCL, and phasor methods to analyze DC and AC circuits, and evaluate power quantities in single-phase and three-phase systems.
- 2. Identify LT switchgear components, types of cables, and earthing methods, and compute energy consumption with power factor correction.
- 3. Explain the construction, operation, and equations of transformers, DC machines, and induction motors, and analyze their performance.
- 4. Examine the characteristics of P-N junction and Zener diodes, and analyze rectifier and filter circuits for different operating conditions.
- 5. Compare BJT and FET characteristics, and demonstrate their configurations and biasing for amplification.

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)	ΙΥ			
Course Code:	THERMODYNAMICS	L	Т	Р	С
N1203B		3	0	0	3

Prerequisite: Engineering Chemistry and Physics

Course Objective:

- 1. To introduce the basic concepts and laws of thermodynamics.
- 2. To apply the first and second laws to closed and open systems.
- 3. To understand the properties of pure substances and their use in thermodynamic processes.
- 4. To study the working principles and performance of thermodynamic cycles.
- 5. To prepare students for applications in engines, power plants and refrigeration.

Tables, Codes: Steam Tables and Mollier Chart, Refrigeration Tables

Module 1: Basic Concepts and First Law of Thermodynamics

System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium State, Property, Process, Exact and Inexact Differentials, Cycle, Reversibility, Quasi – static Process, Irreversible Process, Causes of Irreversibility, Energy in State and in Transition, Types, Displacement and Other forms of Work, Heat Point and Path functions, Zeroth Law of Thermodynamics, Concept of Temperature, Principles of Thermometry, Reference Points, Constant Volume gas Thermometer, Scales of Temperature, Ideal Gas Scale, PMM - I, Joule's Experiments, First law of Thermodynamics, Corollaries, First law applied to a Process, applied to a flow system, Steady Flow Energy Equation.

Module 2: Second Law of Thermodynamics and Availability

Limitations of the First Law, Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics, Kelvin, Planck and Clausius Statements and their Equivalence, Corollaries, PMM of Second kind, Carnot's principle, Carnot cycle and its specialties, Thermodynamic scale of Temperature, Clausius Inequality, Entropy, Principle of Entropy Increase – Energy Equation, Availability and Irreversibility – Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations – Elementary Treatment of the Third Law of Thermodynamics.

Module 3: Pure Substance and Perfect Gas

Pure Substances, P - V- T surfaces, T- S and h- s diagrams, Mollier Charts, Phase Transformations: Triple point at critical state properties during change of phase, Dryness Fraction, Clausius - Clapeyron Equation, Property tables and application of these concepts in various thermodynamic processes, including steam calorimetry.

Perfect Gas Laws, Equation of State, Specific and Universal Gas constants, various Nonflow processes, Properties, end states, Heat and Work Transfer, changes in Internal Energy, Throttling and Free Expansion Processes, Flow processes.

Module 4: Real Gas models and Perfect Gas Mixtures

Deviations from perfect Gas Model, Vader Waals Equation of State, Compressibility charts, variable specific Heats, Gas Tables. Mixtures of perfect Gases: Mole Fraction, Mass friction Gravimetric and volumetric Analysis. Dalton's Law of partial pressure, Avogadro's Laws of additive volumes. Mole fraction, Volume fraction and partial pressure, Equivalent Gas constant and

Molecular Internal Energy, Enthalpy, sp. Heats and Entropy of Mixture of perfect Gases and Vapour.

Module 5: Psychrometry and Thermodynamic Cycles

Atmospheric air, Psychrometric Properties, Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, Thermodynamic Wet Bulb Temperature, Specific Humidity, Relative Humidity, Saturated Air, Vapour pressure, Degree of saturation, Adiabatic Saturation, Carrier's Equation, Psychrometric chart.

Thermodynamic Cycles: Sterling Cycle, Atkinson Cycle, Ericsson Cycle, Lenoir Cycle, Description and representation on P–V and T- S diagram, Thermal Efficiency, Mean Effective Pressures on Air standard basis, Comparison of Cycles. Refrigeration Cycles: Bell Coleman cycle, Vapour compression cycle, Ammonia, Water Vapor Absorption Cycle, Performance Evaluation.

Text Books

- 1. Engineering Thermodynamics, P.K. Nag, Mc Graw Hill, 7th Edition, 2020.
- 2. Fundamentals of Thermodynamics, Richard E. Sonntag and Claus Borgnakke, Wiley, 8th Edition, 2014.

Reference Books

- 1. Thermodynamics, Yunus A Cengel, Michael A Boles, McGraw-Hill, 9th Edition, 2019.
- 2. Thermodynamics, J.P. Holman, McGraw Hill Education, 10th Edition, 2010.
- 3. Engineering Thermodynamics, Chattopadhyay, Oxford, 2nd Edition, 2015.
- 4. Engineering Thermodynamics, Rogers, Pearson, 4th Edition, 1996.
- 5. Engineering Thermodynamics, M Achuthan, PHI, 2nd Edition, 2009.
- 6. Thermodynamics for Engineers, Kenneth A. Kroos, Merle C. Potter, Cengage, 1st Edition, 2014.

Course Outcomes

At the end of the course, the student will be able to:

- **CO1.** Understand the basic thermodynamic concepts, systems, and properties.
- **CO2.** Apply the first law to both closed and open systems.
- **CO3.** Analyze thermodynamic processes using property diagrams and tables.
- **CO4.** Apply the second law and evaluate entropy changes and efficiency.
- **CO5.** Examine the performance of power and refrigeration cycles.
- **CO6.** Solve real-world thermodynamic problems related to mechanical systems.

CO-PO/PSO Mapping

Course Outcomes		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	2	3	2	-	ı	ı	-	ı	-	ı	ı	-	2	3		
CO2	2	3	2	-	ı	ı	-	ı	-	ı	ı	-	2	3		
CO3	2	3	2	-	-	-	-	-	-	-	-	-	2	3		
CO4	2	3	2	-	-	-	-	-	-	-	-	-	2	3		
CO5	2	3	2	-	-	-	-	-	-	-	-	-	2	3		
Average	2	3	2	-	-	-	-	•	-	-	-	-	2	3		

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)		B. Tech: ME I Year-II Sem				
Course Code:	ENGINEERING DRAWING AND COMPUTER AIDED	L	T	Р	С		
N1203A	DRAFTING	2	0	2	3		

Course Objectives:

- 1. To introduce the fundamentals of engineering drawing and projection systems.
- 2. To develop skills in constructing orthographic, isometric, and sectional views.
- 3. To train students in interpreting and creating technical drawings using CAD tools.
- 4. To familiarize students with dimensioning standards and drafting conventions.
- 5. To bridge manual drafting techniques with computer-aided drafting practices.

Module 1: Introduction to Engineering Graphics (Conventional)

Conventional: Principles of Engineering Graphics and their Significance, Geometrical Constructions, Scales, Plain and Diagonal, Conic Sections including the Rectangular Hyperbola, General method only. Cycloid, Epicycloid and Hypocycloid.

Module 2: Orthographic Projections (Conventional and Computer Aided)

Conventional: Principles of Orthographic Projections, Conventions, Projections of Points and Lines, Projections of Plane regular geometric figures. Computer aided orthographic projections, points, lines and planes.

Computer Aided: Introduction to Computer aided drafting, views, commands and conics.

Module 3: Projections of Regular Solids (Conventional and Computer Aided)

Conventional: Projection of regular solids - Prism, Cylinder, Pyramid, Cone. Sections or Sectional views of Right Regular Solids, Prism, Cylinder, Pyramid, Cone.

Computer Aided: Computer aided projections of solids, sectional views.

Module 4: Development of Surfaces (Conventional)

Conventional: Prism, Cylinder, Pyramid and Cone.

Module 5: Isometric Projections (Conventional and Computer Aided)

Conventional and Computer Aided: Principles of Isometric Projection, Isometric Scale, Isometric Views, Conventions, Isometric Views of Lines, Plane Figures, Simple Solids. Conversion of Isometric Views to Orthographic Views and Vice- versa i.e. Conversion of orthographic projection into isometric view.

Note:

- 1. The End Semester Examination will be in conventional mode.
- 2. CIE I will be in conventional mode.
- 3. CIE II will be using Computer

Text Books

- 1. Engineering Drawing, N. D. Bhatt, Charotar, 54th Edition, 2023.
- 2. Engineering Drawing and graphics Using AutoCAD, T. Jeyapoovan and Vikas, S. Chand and company Ltd., 3rdEdition,2010.

REFERENCE BOOKS:

- 1. Engineering Drawing, Basant Agrawal and C.M. Agrawal, McGraw Hill, 3rd Edition, 2019.
- 2. Engineering Graphics and Design, WILEY, John Wiley and Sons Inc, 3rdEdition, 2020.
- 3. Engineering Drawing, M. B. Shah and B.C. Rane, Pearson, 2nd Edition, 2009.
- 4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford, 1st Edition, 2015.
- 5. Computer Aided Engineering Drawing, K. Balaveera Reddy, CBS Publishers, 2nd Edtn, 2015.

Course Outcomes

At the end of the course, the student will be able to:

- **CO1.** Understand and apply the principles of orthographic and isometric projections.
- **CO2.** Create sectional views and dimensioned drawings using BIS standards.
- **CO3**. Use CAD software to generate 2D engineering drawings.
- CO4. Visualize and construct solid models from 2D views.
- **CO5.** Interpret and produce engineering drawings of mechanical components and assemblies.
- **CO6.** Demonstrate drafting skills for practical and industrial applications.

CO-PO/PSO Mapping

Course Outcomes		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	2	-	-	-	-	-	1	-	3	2	-		
CO2	3	2	2	2	-	-	-	-	-	-	-	3	2	-		
CO3	3	2	2	2	ı	ı	ı	ı	-	ı	ı	3	2	-		
CO4	3	2	1	3	-	-	-	-	-	-	-	3	3	-		
CO5	3	2	1	3	-	-	-	-	-	-	-	3	3	-		
Average	3	2	1.6	2.4	-	-	-	-	-	-	-	3	2.4	-		

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)		B. Tech: ME I Year-II Sem				
Course Code:	CHEMISTRY LAB FOR ENGINEERS	L	Т	Р	D		
N12004	(CE & ME)	0	0	2	1		

Pre-Requisites: Chemistry Knowledge at pre-university level

Course Description: The course includes experiments based on fundamental principles of chemistry essential for engineering students, aiming to develop practical skills and reinforce theoretical concepts.

Course Objectives:

- 1. Students will understand and perform experiments based on core chemical principles relevant to engineering applications.
- 2. Students will learn to estimate the hardness of water to assess its suitability for drinking purposes.
- 3. Students will acquire the ability to perform acid-base titrations using instrumental methods such as conductometry, potentiometry, and pH metry.
- 4. Students will gain hands-on experience in synthesizing polymers like Bakelite and Nylon 6, 6 in the laboratory.

List of Experiments:

I. Volumetric Analysis:

Estimation of Hardness of water by EDTA Complexometry method.

II. Conductometry:

- 1. Estimation of the concentration of strong acid by Conductometry.
- 2. Estimation of the concentration of strong and weak acid in an acid mixture by Conductometry.

III. Potentiometry:

- 1. Estimation of concentration of Fe⁺²ion by Potentiometry using KMnO4.
- 2. Estimation of concentration of strong acid with strong base by Potentiometry using quinhydrone.

IV. pH Metry:

Determination of an acid concentration using pH meter.

V. Preparations:

- 1. Preparation of Bakelite.
- 2. Preparation Nylon 6, 6.

VI. Corrosion:

Determination of rate of corrosion of mild steel in the presence and absence of inhibitor.

VII. Lubricants:

- 1. Estimation of acid value of given lubricant oil.
- 2. Estimation of viscosity of lubricant oil using Ostwald's Viscometer.

VIII. Virtual lab experiments:

- 1. Construction of Fuel cell and it's working.
- 2. Smart materials for Biomedical applications
- 3. Batteries for electrical vehicles.
- 4. Functioning of solar cell and its applications.

TEXT BOOKS:

- 1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
 - 2. Vogel's text book of practical organic chemistry 5th edition
 - 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications.
 - 4. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007).

Course Outcomes:

At the end of the course, the student will be able to:

CO1: Develop practical skills through hands-on chemistry experiments relevant to engineering.

CO2: Learn to determine important parameters such as water hardness and the corrosion rate of mild steel under various conditions.

CO3: Apply techniques like conductometry, potentiometry, and pH metry to determine concentrations or equivalence points in acid-base reactions.

CO4: Gain experience in synthesizing polymers such as Bakelite and Nylon-6,6.

CO-PO/PSO Mapping

Course Outcomes		Program Outcomes (POs)/Program Specific Outcomes(PSOs)														
	PO1	P O 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS 01	PSO 2		
CO1	3	3	ı	ı	ı	3	2	ı	ı	ı	ı	3	ı	-		
CO2	3	3	ı	ı	ı	3	3	ı	ı	ı	ı	3	ı	-		
соз	3	3	1	1	1	3	3	1	1	-	-	3	1	-		
CO4	2	-	1	ı	1	3	2	ı	-	1	-	2	-	-		
Average	2.75	3	-	-	-	3	2.5	-	-	-	-	2.75	-	-		

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME							
Onwards	(UGC Autonomous)	ľ	ear-	II Se	m				
Course Code:		L	Τ	Р	С				
N12053	PYTHON PROGRAMMING LAB	0	0	2	1				
N12055		"	ľ	~	1 -				

Course Objectives:

- To install and run the Python interpreter
- To learn control structures.
- To Understand Lists, Dictionaries in python
- To Handle Strings and Files in Python

Note: The lab experiments will be like the following experiment examples.

List of Experiments:

1.

- I. Use a web browser to go to the Python website http://python.org. This page contains information about Python and links to Python-related pages, and it gives you the ability to search the Python documentation.
- II. Start the Python interpreter and type help() to start the online help utility.
- 2. Start a Python interpreter and use it as a Calculator.
- 3. Write a program to calculate compound interest when principal, rate and number of periods are given.
- 4. Read the name, address, email and phone number of a person through the keyboard and print the details.
- 5. Print the below triangle using for

loop. 5

4 4

3 3 3

2222

11111

- 6. Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)
- 7. Python program to print all prime numbers in a given interval (use break)
- 8. Write a program to convert a list and tuple into arrays.
- 9. Write a program to find common values between two arrays.
- 10. Write a function called palindrome that takes a string argument and returnsTrue if it is a palindrome and False otherwise. Remember that you can use the built-in function len to check the length of a string.
- 11. Write a function called is_sorted that takes a list as a parameter and returns True if the list is sorted in ascending order and False otherwise.
- 12. Write a function called has_duplicates that takes a list and returns True if there is any element that appears more than once. It should not modify the original list.
- 13. Write a function called remove_duplicates that takes a list and returns a new list with only the unique elements from the original. Hint: they don't have to be in the same order.
- 14. The wordlist I provided, words.txt, doesn't contain single letter words. So you might want to add "I", "a", and the empty string.
- 15. Write a python code to read dictionary values from the user. Construct a function to invert its content. i.e., keys should be values and values should be keys.
- 16. Add a comma between the characters. If the given word is 'Apple', it should become

- 'A,p,p,l,e'
- 17. Remove the given word in all the places in a string?
- 18. Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function?
- 19. Writes a recursive function that generates all binary strings of n-bit length
- 20. Write a python program that defines a matrix and prints
- 21. Write a python program to perform multiplication of two square matrices
- 22. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions.
- 23. Use the structure of exception handling all general-purpose exceptions.
- 24. Write a function called draw_rectangle that takes a Canvas and a Rectangle as arguments and draws a representation of the Rectangle on the Canvas.
- 25. Add an attribute named color to your Rectangle objects and modify draw_rectangle so that it uses the color attribute as the fill color.
- 26. Write a function called draw_point that takes a Canvas and a Point as arguments and draws a representation of the Point on the Canvas.
- 27. Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas.
- 28. Write a python code to read a phone number and email-id from the user and validate it for correctness.
- 29. Write a Python code to merge two given file contents into a third file.
- 30. Write a Python code to open a given file and construct a function to check for given words present in it and display on found.
- 31. Write a Python code to Read text from a text file, find the word with most number of occurrences
- 32. Write a function that reads a file *file1* and displays the number of words, number of vowels, blank spaces, lower case letters and uppercase letters.
- 33. Import numpy, Plotpy and Scipy and explore their functionalities.
- 34. Install NumPypackage with pip and explore it.
- 35. Write a program to implement Digital Logic Gates AND, OR, NOT, EX-OR
- 36. Write a GUI program to create a window wizard having two text labels, two text fields and two buttons as Submit and Reset.

TEXT BOOKS:

- 1. Supercharged Python: Take your code to the next level, Overland
- 2. Learning Python, Mark Lutz, O'reilly

REFERENCE BOOKS:

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 2. Python Programming A Modular Approach with Graphics, Database, Mobile, and Web Applications, Sheetal Taneja, Naveen Kumar, Pearson
- 3. Introduction to Python Programming, Gowrishakar S, Veena A, CRC Press
- 4. Programming with Python, A User's Book, Michael Dawson, Cengage Learning, India Edition
- 5. Python for Data Science, Dr. Mohd Abdul Hameed, Wiley publications
- 6. Core Python Programming, Dr. R. Nageswara Rao, Dreamtech press
- 7. Introduction to Python, Gowrishankar S, Veena A., CRC Press

COURSE OUTCOMES:

After completion of the course, the student should be able to

- Develop the application specific codes using python.
- Understand Strings, Lists, Tuples and Dictionaries in Python
- Verify programs using modular approach, file I/O, Python standard library
- Implement Digital Systems using Python

J. B. Institute of Engineering and Technology (UGC Autonomous)	B. Tech: ME I Year-II Sem					
ELEMENTS OF ELECTRICAL AND ELECTRONICS	L	Т	Р	С		
ENGINEERING LAB	0	0	2	1		
•	(UGC Autonomous) ELEMENTS OF ELECTRICAL AND ELECTRONICS	(UGC Autonomous) ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB	(UGC Autonomous) I Year- ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB O O	(UGC Autonomous) ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB O O 2		

Pre-Requisites: Physics

COURSE OBJECTIVES

The Course aims:

- 1. To experimentally verify fundamental electrical laws.
- 2. To familiarize students with the measurement of electrical quantities in single-phase and three-phase transformers.
- 3. To study the performance characteristics of DC and AC motors through experimental methods.

List of Experiments

PART- A (Electrical)

- 1. Verification of KVL and KCL.
- 2. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer.
- 3. Verification of Relationship between Voltages and Currents (Star Delta, Delta Delta, Delta Star, Star- Star) in a Three Phase Transformer.
- 4. Measurement of Active and Reactive Power in a balanced Three phase circuit.
- 5. Performance Characteristics of a DC Shunt Motor.
- 6. Performance Characteristics of a Three Phase Induction Motor.

PART B: ELECTRONICS

- 1. Study and operation of
- (i) Multimeters (ii) Function Generator (iii) Regulated Power Supplies (iv) CRO.
- 2. P-N Junction diode characteristics
- 3. Zener diode characteristics and Zener as voltage Regulator
- 4. Input and Output characteristics of Transistor in CB, CE configuration
- 5. Full Wave Rectifier with and without filters
- 6. Input and Output characteristics of FET in CS configuration

COURSE OUTCOMES

At the end of the course, the student will be able to:

- 1. Apply and validate KVL, and KCL in practical electrical circuits.
- Measure voltage, current, and power in transformer circuits and verify the phase and magnitude relationships of voltages and currents for various three-phase transformer connections.
- 3. Analyse the performance of a DC shunt motor and evaluate the torque-speed characteristics of a three-phase induction motor.
- 4. To identify and characterize diodes and various types of transistors.

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)			h: M II Se	
Course Code:	LINGUASKILL FOR PROFESSIONALS – B1	L	Т	Р	С
N1200F	(Audit Course)	2	0	0	0

Pre-Requisites: NIL

COURSE OBJECTIVES:

To enable students

- 1. Acquire an extensive range of vocabulary related to diverse topics.
- 2. Enhance pronunciation skills, focusing on specific sounds and intonation patterns
- 3. Improve the use of various grammar concepts
- 4. Strengthen listening, speaking, reading, and writing skills across different proficiency levels
- 5. Develop practical language skills for everyday communication scenarios

Module 1 (6L)

UNIT-1

Grammar: Subject-Object, Present Tense

Vocabulary: Words about friendship, communication, work and technology

Pronunciation: Word stress, sentence stress

UNIT-2

Everyday English: Opinions and suggestions

Listening: Listening Activity 1, Listening Activity 2
 Reading: Reading Activity 1, Reading Activity 2

Speaking: Speaking Activity 1, Speaking Activity 2

Writing: Guide, Email giving news

Module 2 (6L)

UNIT-1

Grammar: Modals, Phrases of ability, Articles, used to and usually

Vocabulary: Words about relationship and ability

Pronunciation: Linking sounds, Intonation in question tags

UNIT -2

Everyday English: Telling a story; Offering and asking for help

• **Listening:** Listening Activity 1, Listening Activity 2

• **Reading:** Reading Activity 1, Reading Activity 2

• **Speaking:** Speaking Activity 1, Speaking Activity 2

Writing: About someone's life, online advertisement

Module 3 (6L)

UNIT-1

Grammar: Future forms, zero and first conditionals, comparatives and superlatives

Vocabulary: Words about the natural world, environmental issues and food

Pronunciation: Sound and spelling 'a', $/ \int / t \int /$

UNIT-2

Everyday English: Giving reasons, results and examples; Asking and giving recommendations

- **Listening:** Listening Activity 1, Listening Activity 2
- Reading: Reading Activity 1, Reading Activity 2

Speaking: Speaking Activity 1, Speaking Activity 2
 Writing: Discussion essay, Review of a restaurant or café

Module 4 (6L)

UNIT-1

Grammar: Quantifiers, Reported speech

Vocabulary: Words about buildings and sharing information

Pronunciation: Sounds /t//d//k//g//h//w/

UNIT-2

Everyday English: Offers, request, permission; generalising and being vague

Listening: Listening Activity 1, Listening Activity 2
 Reading: Reading Activity 1, Reading Activity 2
 Speaking: Speaking Activity 1, Speaking Activity 2

Writing: A note with useful information, an email summary of a news story

Module 5 (6L)

UNIT-1

Grammar: Passive, Relative clause, Second and third conditionals

Vocabulary: Words about music and sport; expressions with do, make and take

Pronunciation: -ed ending words, mostly confused words

UNIT-2

Everyday English: Recommending, Discussing problems and reassuring

Listening: Listening Activity 1, Listening Activity 2
 Reading: Reading Activity 1, Reading Activity 2

Speaking: Speaking Activity 1, Speaking Activity 2

Writing: Article, Email with advice

Text Books

1. Doff, Adrian, et al. *Empower Second Edition Student's Book with Digital Pack: B1+ Intermediate*. Cambridge University Press, 2022.

Reference Books

1. Cullen, Pauline, et al. The Official Cambridge Guide to IELTS for Academic and General Training: Student's Book with Answers. with DVD-ROM. Cambridge Univ. Press, 2014.

E-Resources

- 1. Cambridge English
- 2. English with Cambridge YouTube
- 3. BBC Learning English Learn English with BBC Learning English Homepage
- 4. https://englishonline.britishcouncil.org/

Course Outcomes

At the end of the course, the student will be able to:

CO1. Demonstrate a diverse vocabulary repertoire, facilitating better expression and comprehension.

CO2. Exhibit inteligible pronunciation skills, ensuring clearer oral communication.

CO3. Utilise various grammar concepts accurately and coherently.

CO4. Strengthened language skills across listening, speaking, reading, and writing.

CO5. Apply practical language skills effectively in everyday communication scenarios.

CO-PO/PSO Mapping

Course		Program Outcomes(POs)/Program Specific Outcomes(PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2		
CO1	1	ı	-	ı	ı	ı	-	ı	2	2	ı	3	-	-		
CO2	-	-	-	-	-	-	-	-	2	2	-	3	-	-		
CO3	-	-	-	-	-	-	-	-	2	2	-	3	-	-		
CO4	-	-	-	-	-	-	-	-	2	2	-	3	-	-		
CO5	-	-	-	-	-	-	-	-	2	2	-	3	-	-		
Average	-	-	-	-	-	-	-	-	2	2	-	3	-	-		

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME						
Onwards	(UGC Autonomous)	II	Year	-I Se	m			
Course Code:	PROBABILITY, STATISTICS AND COMPLEX	L	Т	Р	С			
N2100C	VARIABLES	3	0	0	3			

Pre-Requisites: Mathematics courses of first year of study.

Module 1: Random Variables and Probability Distributions:

[08L]

Concept of a Random Variable – Discrete Probability Distributions – Continuous Probability Distributions – Mean of a Random Variable – Variance of a Random Variable.

Discrete Probability Distributions: Binomial Distribution – Poisson distribution.

Module 2: Continuous Distributions and sampling:

[10L]

Uniform Distribution – Normal Distribution – Areas under the Normal Curve – Applications of the Normal Distribution – Normal Approximation to the Binomial Distributions. Fundamental Sampling Distributions: Random Sampling – Some Important Statistics – Sampling Distributions – Sampling Distribution of Means – Central Limit Theorem.

Module 3: Tests of Hypotheses (Large and Small Samples):

[10L]

Statistical Hypotheses: General Concepts – Testing a Statistical Hypothesis. Single sample: Tests concerning a single mean. Two samples: Tests on two mean (Unknown for equal variance). One sample: Test on a single proportion. Two samples: Tests on two proportions. Two- sample tests concerning variances: F-distribution.

Module 4: Complex Differentiation:

[10L]

Differentiation of Complex functions – Analyticity – Cauchy-Riemann equations (without proof) – Harmonic Functions – Finding harmonic conjugate – Milne-Thomson method – Elementary analytic functions (exponential, trigonometric, logarithm) and their properties.

Module 5: Complex Integration:

[10L]

Line integral – Cauchy's theorem – Cauchy's Integral formula – Zeros of analytic functions – Singularities – Taylor's series – Laurent's series. Residues – Cauchy Residue theorem (All theorems without Proof).

Text Books

- 1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
- 2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.
- 3. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 45th Edition, 2020.

Reference Books

- 1. T.T. Soong, Fundamentals of Probability and Statistics for Engineers, John Wiley & Sons, Ltd, 2004.
- 2. Sheldon M Ross, Probability and statistics for Engineers and scientists, academic press, 2014.
- 3. Murray R. Spiegel, Ph.D., Seymour Lipschutz, Ph.D., John J. Schiller, Ph.D., Dennis Spellman, Ph.D., Complex Variables (Schaum's outline).
- 4. Erwin Kreyszig, Advanced Engineering Mathematics, 9thEdition, John Wiley &Sons, 2006.
- 5. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Edition, Mc-Graw Hill, 2004.

E-Resources

- https://onlinecourses.nptel.ac.in/noc21_bt32/preview
- https://nptel.ac.in/courses/111105041
- https://archive.nptel.ac.in/content/syllabus_pdf/103106112.pdf
- https://onlinecourses.nptel.ac.in/noc20_ma50/preview
- https://onlinecourses.nptel.ac.in/noc20_ma50/preview

Course Objectives:

To learn

- 1. The ideas of random variables and various discrete and continuous probability distributions and their properties.
- 2. The statistical methods of studying data samples.
- 3. Differentiation and integration of complex valued functions.
- 4. Evaluation of integrals using Cauchy's integral formula and Cauchy's residue theorem.
- 5. Expansion of complex functions using Taylor's and Laurent's series.

Course Outcomes:

After learning the contents of this paper, the student must be able to

- 1. Apply the concepts of Random variable and distributions to some case studies.
- 2. apply continuous distributions, sampling distributions, and the Central Limit Theorem in practical problems.
- 3. Understood sampling theory and apply hypothesis testing in real-world scenarios.
- 4. Analyze the complex function with reference to their analyticity, integration using Cauchy's integral and residue theorems.
- 5. Apply Taylor's and Laurent's series expansions for analyzing complex functions.

CO-PO/PSO Mapping

Course			Prog	gram (Outcon	nes (P	Os)/Pr	ogram	Spec	ific Out	comes((PSOs)		
Outcomes	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
Guccomes	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	2	2	2	-	-	-	-	-	-	-	1	2	1
CO2	3	3	2	3	-	-	-	-	-	-	-	1	2	1
CO3	3	3	3	3	-	-	-	-	-	-	-	1	1	1
CO4	3	3	2	3	-	-	-	-	-	-	-	1	1	1
CO5	3	3	3	3	-	-	-	-	-	-	-	1	2	1
Average	3	2.8	2.4	2.8	-	-	-	-	-	-	-	1	1.6	1

AY: 2025-26 Onwards	J. B. INSTITUTE OF ENGINEERING AND TECHNOLOGY (UGC Autonomous)		B. Te Year		
Course Code:	Course Code: MECHANICS OF SOLIDS				С
N2103A	MECHANICS OF SOLIDS	3	0	0	3

Pre-Requisites: Engineering Mechanics

Course objectives:

The objectives of this course are to:

- 1. Understand the concepts of internal forces, moments, stress, strain, and deformation of solids with applications to bars, beams, and columns.
- 2. Learn the fundamentals of applying equilibrium, compatibility, and force deformation relationships to structural elements.
- 3. Study twisting of circular bars and hollow shafts acted on by torsional moments.
- 4. Define the state of stress at a point on a body and to develop stress transformations.
- 5. Introduce the concept of theories of elastic failure and their significance in the design.

Module 1: Stress and Strain

Unit 1: Stress and Strain: Elasticity and plasticity, Types of stresses and strains, Hooke's law, Stress – strain diagram for mild steel, Working stress, Factor of safety, Lateral strain, Poisson's ratio and volumetric strain, Elastic moduli and the relationship between them, Bars of varying sections, Composite bars, Temperature stresses.

Unit 2: Strain energy and Resilience: Gradual, sudden, impact and shock loadings.

Module 2: Shear Force and Bending Moment:

Shear Force and Bending Moment: Definition of beam, Types of beams, Concept of shear force and bending moment, S.F and B.M diagrams for cantilever, Simply supported and overhanging beams subjected to point loads and Uniformly Distribute Load, Uniformly varying loads and combination of these loads, Point of contra flexure, Relation between S.F., B.M and rate of loading at a section of a beam.

Module 3: Flexural Stresses

Unit 1: Flexural Stresses: Theory of simple bending, Assumptions, Derivation of pure bending equation, Determination of bending stresses. Section modulus for rectangular and circular sections of Solid and Hollow: I, T, Angle and Channel sections, Design of simple beam sections.

Unit 2: Shear Stresses: Derivation of formula, Shear stress distribution across various beams sections: Rectangular, Circular, Triangular, I, T and Angle sections.

Module 4:

Unit 1: Principal Stresses and Strains: Introduction, Stresses on inclined sections of a bar under axial loading, Compound stresses, Normal and tangential stresses on an inclined plane for biaxial stresses, two perpendicular normal stresses accompanied by a state of simple shear, Mohr's circle of stresses, Principal stresses and strains, Analytical and graphical solutions.

Unit 2: Theories of Failure: Introduction, Various theories of failure: Maximum Principal Stress Theory, Maximum Shear Stress Theory, Maximum Principal Strain Theory, Maximum Strain Energy Theory, Distortion Energy Theory (Von Mises Theory).

Module 5:

Unit 1: Torsion of Circular Shafts: Theory of pure torsion, Derivation of Torsion equations, Assumptions made in the theory of pure torsion, Torsional moment of resistance, Polar section modulus, Power transmitted by shafts, Combined bending and torsion and end thrust, Design of shafts according to theories of failure.

Unit 2: Columns and Struts: Euler's Theory, Limitations of Euler's theory, Equivalent Length, Rankine's Formula, Secant Formula.

Textbooks

- 1. Strength of Materials, S. Ramamrutham and R. Narayanan, Dhanpat Rai Publishing, 20th Edition, 2020.
- 2. Elements of Strength of Materials, S.P. Timoshenko and D.H. Young, CBS Publishers, 5th Edition, Reprint 2020.

Reference Books

- 1. Mechanics of Materials, Barry J. Goodno and James M. Gere, Cengage, 9th Edition, 2018.
- 2. Strength of Materials, S. S. Rattan, Tata McGraw Hill, 2ndEdition, 2011.
- 3. Strength of Materials, U.C. Jindal, Pearson Education India, 1st Edition, 2012.
- 4. Engineering Mechanics of Solids, Egor P. Popov and Toader A. Balan, PHI Learning, 2nd Edition, 2010.
- 5. Strength of Materials, G. H. Ryder, Macmillan Long Man Publications, 3rd Edition, 1961.
- 6. Strength of Materials, W. A. Nash and M. C. Potter, McGraw Hill, 5th Edition, 2011.

Course Outcomes

At the end of the course, the student will be able to:

- **CO1.** Evaluate the internal forces, moments, stresses, strains, and deformations in structures made of various materials acted on by a variety of loads.
- **CO2.** Draw axial force, shear force and bending moment diagrams for beams and frames.
- **CO3.** Develop the Bending and Torsion formula and apply to the design of beams and shafts.
- **CO4.** Use the stress transformation equations to find the state of stress at a point for various rotated positions of the stress element and display the same in graphical form as Mohr's circle.
- **CO5.** Understand the different criteria for the safety of the component by applying the theories of elastic failure.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	2	-	-	-	1	1	-	1	-	2	3		
CO2	3	2	2	2	-	-	-	-	-	-	-	-	2	3		
CO3	3	2	2	2	-	-	-	-	-	-	ı	-	2	3		
CO4	3	2	2	3	-	-	-	-	1	-	1	-	3	3		
CO5	3	2	1	3	-	-	-	-	-	-	-	-	3	3		
Average	3	2	1.8	2.4	-	-	-	-	-	-	-	-	2.4	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME					
Onwards	(UGC Autonomous)	II	Year	- I S	em		
Course Code:	MATERIAL SCIENCE AND METALLURGY	L	Т	Р	С		
N2103B		3	0	0	3		

Course Objectives:

- 1. To understand the structure and properties of engineering materials.
- 2. To study phase diagrams and heat treatment processes of ferrous and non-ferrous alloys.
- 3. To analyze the mechanical behaviour of materials under various loading conditions.
- 4. To identify microstructures and predict material performance in service conditions.
- 5. To introduce testing methods and failure mechanisms of materials.

Module 1:

Crystal Structure: Unit cells, Metallic and Ceramic crystal structures.

Metallurgy: Classification of ores. principles of pyrometallurgy, principles of hydrometallurgy, principles of electrometallurgy, Smelting furnaces: Blast Furnace

Module 2:

Hume – Rothery Rules: Alloys, substitutional and interstitial solid solutions. Phase diagrams: Interpretation of binary phase diagrams and microstructure development, Eutectic, Peritectic, Eutectiod, Peritectoid and monotectic reactions. Iron, Iron carbide phase diagrams and microstructural aspects of ledeburite, Austenite, Pearlite, Ferrite and Cementite.

Module 3:

Heat treatment: Isothermal transformation diagrams for FeC alloys and microstructures development: Martensite, Bainite, Annealing, Normalising, Hardening, Tempering and Spheroidising.

Module 4:

Cooling Curves and Surface Hardening: Continuous cooling curves and interpretation of final microstructures and properties, Thermo mechanical treatments: Austempering, Martempering. Surface hardening methods: Case hardening, Carburizing, Nitriding, Cyaniding, Carbo Nitriding. Flame and induction hardening, Vacuum and plasma hardening.

Module 5:

Alloys and Composites: Alloy steels, Properties and applications of stainless steels and tool steels, Maraging steels. Types of cast irons: Grey, White, Malleable and Spheroidal Graphite cast irons. Copper and its alloys: Brass and bronze. Aluminium and its alloys: Al-Cu Alloys. Ceramics and Composites: Types, properties and applications.

TEXT BOOKS:

- 1. Introduction to Physical Metallurgy, Sidney H. Avner, McGraw Hill, 2nd Edition, 2017
- 2. Material Science and Engineering, V. Raghavan, Prentice Hall of India Private Limited, 5th Edition, 2004.

REFERENCE BOOKS:

- 1. Mechanical Metallurgy, George E. Dieter, Tata McGraw Hill, 3rd Edition, 2013.
- 2. Engineering Materials, Kenneth G. Budinski and Michael K. Budinski, Prentice Hall of India Private Limited, 9th Edition, 2009.
- 3. Engineering Materials and Metallurgy, U. C. Jindal, Pearson, 1st Edition, 2011.
- 4. Materials Science and Engineering: An Introduction, William. D. Callister and David G. Rethwisch, John Wiley and Sons, 10th Edition, 2018.

Course Outcomes

At the end of the course, students will be able to

- CO1. Explain the structure-property relationships in engineering materials.
- CO2. Interpret binary phase diagrams and understand the solidification behaviour of alloys.
- CO3. Understand heat treatment processes and their influence on mechanical properties.
- CO4. Identify microstructures of ferrous and non-ferrous alloys.
- CO5. Analyze mechanical testing results and failure mechanisms like fatigue, creep, and fracture.
- **CO6.** Select suitable materials for mechanical applications based on their behaviour and performance.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	3	1	-	-	-	1	-	-	-	2	3		
CO2	3	2	2	3	-	-	-	-	-	-	-	-	2	3		
CO3	3	2	2	3	ı	ı	1	1	ı	ı	ı	ı	2	3		
CO4	3	2	3	3	ı	-	-	-	1	1	-	-	3	3		
CO5	3	2	3	3	1	ı	ı	-	1	-	ı	ı	3	3		
Average	3	2	2.4	3	-	-	-	-	-	-	-	-	2.4	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME II Year- I Sem						
Onwards	(UGC Autonomous)	11	Year	- I S	em			
Course Code:	PRODUCTION TECHNOLOGY	L	Т	Р	С			
N2103C	PRODUCTION TECHNOLOGY	3	0	0	3			

Prerequisites: Engineering Workshop

Course Objectives:

- 1. To expose the students to understand the concept of basic casting processes and furnaces.
- 2. To provide a technical understanding of various joining processes used in the manufacturing industry.
- 3. To impart the students to the concepts of solid-state welding processes.
- 4. To teach the concepts of rolling and various press working operations.
- To provide a technical understanding of different metal forming processes like extrusion, forging and high energy rate forming processes.

Module 1:

Casting: Steps involved in making a casting, Advantage of casting and its applications, Patterns, Pattern making, Types, Materials used for patterns, Pattern allowances, Properties of moulding methods. Methods of Melting, Crucible melting and cupola operation, Defects in castings, Principles of Gating, Requirements, Types of gates, Design of gating systems, Riser, Function, Types of Riser and Riser design. Casting processes, Types, Sand moulding, Centrifugal casting, Die, Casting, Investment casting, Shell moulding.

Module 2:

Arc Welding: Classification, Types of welds and welded joints and their characteristics, Welding Positions, Arc welding, shielded metal arc welding, Submerged arc welding, Resistance welding, Thermit welding.

Module 3:

Gas Welding: Gas welding, Types, Oxyfuel gas cutting, Standard time and cost calculations. Inert Gas Welding, TIG Welding, MIG welding, Friction welding, Friction Stir Welding, Induction welding, Explosive welding, Laser Welding.

Soldering, Brazing, Heat affected zone in welding. Welding defects, Causes and remedies, Destructive and non, Destructive testing of welds.

Module 4:

Hot Working and Cold Working: Sheet metal Operations: Stamping, Blanking and piercing, Coining, Strip layout, Hot and cold spinning, Bending and deep drawing. Rolling fundamentals, Theory of rolling, Types of Rolling mills and products. Forces in rolling and power requirements. Drawing and its types, Wire drawing and Tube drawing, Types of presses and press tools. Forces and power requirement in the above operations.

Module 5:

Extrusion of Metals: Basic extrusion process and its characteristics. Hot extrusion and cold extrusion, Forward extrusion and backward extrusion, Impact extrusion, Extruding equipment, Tube extrusion, Hydrostatic extrusion. Forces in extrusion.

Forging Processes: Forging operations and principles, Tools, Forging methods, Smith forging, Drop Forging, Roll forging. Forging hammers: Rotary forging, Forging defects, Cold forging, Swaging, Forces in forging operations.

High Energy Rate Forming Processes: Principles of Explosive Forming, Electrohydraulic Forming, Electro, Magnetic forming and rubber pad forming.

Special manufacturing Processes: Introduction to Semiconductor Manufacturing and Packaging

TEXT BOOKS:

- 1. A Textbook of Production Technology (Manufacturing Processes), Dr. P.C. Sharma, S. Chand Publishing, 11th Revised Edition, 2022.
- 2. Manufacturing Technology: Foundry, Forming and Welding, P.N. Rao, McGraw Hill Education, Vol. 1, 5th Edition, 2018.

REFERENCE BOOKS:

- 1. Manufacturing Engineering and Technology, Serope Kalpakjian and Steven R. Schmidt, Pearson, 7th Edition, 2014.
- 2. Elements of Workshop TechnologyVol.1, S.K. Hajra Choudhury, A.K. Hajra Choudhury and Nirjhar Roy, Media Publishers and Promoters Pvt. Ltd., 1st Edition, 2008.
- 3. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, Mikell P. Groover, Wiley, 7th Edition, 2023.
- 4. Production Technology Vol. 1, Sreeramulu, WILEY, 1st Edition, 2018.
- 5. Production Engineering, P.C. Sharma, S. Chand Publishing, 8th Edition, 1999.

Course Outcomes

At the end of the course, students will be able to

- **CO1**. Elaborate the fundamentals of various moulding, casting techniques and furnaces.
- **CO2.** Identify the importance of permanent joining and principle behind different welding processes.
- **CO3.** Explain the concepts of solid-state welding processes.
- CO4. Understand the concepts of rolling and sheet metal operations in metal working.
- **CO5.** Elaborates the uniqueness of extrusion, forging and high energy rate forming processes in metal working. Select suitable materials for mechanical applications based on their behaviour and performance.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	3	-	-	-	-	1	1	-	-	2	3		
CO2	3	2	2	3	-	-	-	-	-	-	-	-	2	3		
CO3	3	2	2	3	-	-	-	-	-	-	ı	-	2	3		
CO4	3	2	3	3	-	-	-	-	-	-	-	-	3	3		
CO5	3	2	3	3	-	-	-	-	-	-	-	-	3	3		
Average	3	2	2.4	3	-	-	-	-	-	-	-	-	2.4	3		

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)			ch: M - I S	
Course Code:	FLUID MECHANICS AND HYDRAULIC MACHINES	L	Т	Р	С
N2103D	FLOID MECHANICS AND HIDRAULIC MACHINES	3	0	0	3

Prerequisites: Engineering Mechanics, Thermodynamics

Course Objectives:

- 1. To understand the basic principles of fluid mechanics.
- 2. To identify various types of flows.
- 3. To understand boundary layer concepts and flow through pipes.
- 4. To evaluate the performance of hydraulic turbines.
- 5. To understand the functioning and characteristic curves of pumps

Module 1: Fluid statics

Dimensions and units: Physical properties of fluids, Specific gravity, Viscosity and surface tension, Vapour pressure and their influence on fluid motion, Atmospheric, Gauge and vacuum pressures, Measurement of pressure, Piezometer, U-tube and differential manometers.

Module 2: Fluid kinematics

Stream line, Path line and streak lines and stream tube. Classification of flows: Steady and unsteady, Uniform and non, Uniform, Laminar and turbulent, Rotational and irrotational flows, Equation of continuity for one dimensional flow and three-dimensional flows.

Fluid dynamics: Surface and body forces, Euler's and Bernoulli's equations for flow along a stream line, Momentum equation and its application on force on pipe bend.

Module 3: Boundary Layer Concepts

Definition, Thicknesses, Characteristics along thin plate, Laminar and Turbulent boundary layers (No derivation), Boundary layer in transition, Separation of boundary layer, Submerged objects, Drag and lift.

Closed conduit flow: Reynold's experiment, Darcy Weisbach equation, Minor losses in pipes, Pipes in series and pipes in parallel, Total energy line, Hydraulic gradient line.

Measurement of flow: Pitot tube, Venturi meter and Orifice meter, Flow nozzle.

Module 4: Basics of Turbo Machinery

Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes, Jet striking centrally and at tip, Velocity diagrams, Work done and efficiency, Flow over radial vanes. **Hydraulic Turbines:** Classification of turbines, Heads and efficiencies, Impulse and Reaction Turbines, Pelton wheel, Francis turbine and Kaplan turbine, Working proportions, Work done, efficiencies, Hydraulic Design, Draft tube theory, Functions and efficiency.

Performance of Hydraulic Turbines: Geometric similarity, Unit and specific quantities, Characteristic curves, Governing of turbines, Selection of type of turbine, Cavitation, Surge tank, Water hammer.

Module 5: Centrifugal Pumps

Classification, Working, Work done, Barometric head, Losses and efficiencies, Specific speed, Performance characteristic curves, NPSH.

Reciprocating pumps: Working, Discharge, Slip, Indicator diagrams.

TEXT BOOKS:

- Hydraulics, Fluid mechanics and Hydraulic Machinery, Modi and Seth, standard Book House, 22nd Edition, 2019.
- 2. Fluid Mechanics and Hydraulic Machines, R.K. Bansal, Laxmi Publications, 10th Edtn, 2020.

REFERENCE BOOKS:

- 1. Fluid Mechanics and Hydraulic Machines, Er. R. K. Rajput, S. Chand, 2019.
- 2. Hydraulic Machines: Fluid Machinery, Jagdish Lal, Metropolitan Book Co., 6th Edition, 2016.
- 3. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, S.K. Kataria and Sons, 22nd Edition, 2018.
- 4. Fluid Mechanics and Machinery, D. Rama Durgaiah, New Age International publishers, 1st Edition, 2002.
- 5. Hydraulic Machines, T.R. Banga and S.C. Sharma, Khanna Publishers, 7th Edition, Rpt. 2019.

Course Outcomes

At the end of the course, students will be able to

- **CO1.** Able to explain the effect of fluid properties on a flow system.
- CO2. Able to identify type of fluid flow patterns and describe continuity equation.
- **CO3**. To analyze a variety of practical fluid flow and measuring devices and utilize Fluid Mechanics principles in design.
- **CO4**. To select and analyze an appropriate turbine with reference to given situation in power plants.
- **CO5**. To estimate performance parameters of a given Centrifugal and Reciprocating pump.
- CO6. Able to demonstrate boundary layer concepts.

CO-PO/PSO Mapping

Course			Prog	gram C	outcon	nes (Po	Os)/Pr	ogram	Speci	fic Outo	comes	(PSOs)		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	3	-	-	-	-	-	1	-	-	3	3
CO2	3	2	2	3	-	-	-	-	-	-	-	-	3	3
CO3	3	2	2	3	ı	ı	-	ı	-	ı	ı	ı	3	3
CO4	3	2	3	3	-	-	-	-	-	-	-	-	3	3
CO5	3	2	3	3	ı	ı	-	ı	-	1	-	-	3	3
Average	3	2	2.4	3	-	-	-	-	-	-	-	-	3	3

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)	B. Tech: ME II Year-I Sem						
	COMPUTATIONAL MATHEMATICS LAB	L	Т	Р	С			
Course Code:	(Using Python/ Scilab software)							
N21001	(common to: CE, ME, IT, ECM, CSE(AIML), CSE(DS),	0	0	2	1			

Pre-Requisites: Matrices, Iterative methods and ordinary differential equations.

Course Objectives:

To learn

- 1. Solve problems of Eigen values and Eigen Vectors using Python/Scilab.
- 2. Solution of Algebraic and Transcendental Equations using Python/Scilab.
- 3. Solve problems of Linear system of equations.
- 4. Solve problems of First-Order ODEs Higher order linear differential equations with constant coefficients.

* Visualize all solutions Graphically through programmes

Module 1: Eigen values and Eigenvectors:

[06L]

Programs:

- Finding real and complex Eigen values.
- Finding Eigen vectors.

Module 2: Solution of Algebraic and Transcendental Equations:

[06L]

Bisection method, Newton Raphson Method.

Programs:

- · Root of a given equation using Bisection method.
- Root of a given equation Newton Raphson Method.

Module 3: Linear system of equations:

[06L]

Jacobi's iteration method and Gauss-Seidal iteration method.

Programs:

- Solution of given system of linear equations using Jacobi's method.
- Solution of given system of linear equations using Gauss-Seidal method.

Module 4: First-Order ODEs:

[08L]

Exact and non-exact equations, Applications: exponential growth/decay, Newton's law of cooling. **Programs:**

- Solving exact and non-exact equations.
- Solving exponential growth/decay and Newton's law of cooling problems.

Module 5: Higher order linear differential equations with constant coefficients: [06L]

Programs:

- Solving homogeneous ODEs.
- Solving non-homogeneous ODEs.

Text Books

- 1. Kenneth A. Lambert, The fundamentals of Python: First Programs, 2011, Cengage Learnings.
- 2. Think Python First Edition, by Allen B. Downey, Orielly publishing.

3. Gilberto E.Urroz, Ordinary Differential Equations with Scilab, 2001.

Reference Books

- 1. John C. Lusth, An Introduction to Python, The University of Alabama, 2011.
- 2. Dave Kuhlman, Introduction to Python, 2008.
- 3. Introduction to Python Programming, William Mitchell, Povel Solin, Martin Novak et al., NCLab Public Computing, 2012.
- 4. Introduction to Python Programming, ©Jacob Fredslund, 2007.
- 5. Achuthsankar S Nair & Hema Ramchandran, SCILAB (A Free Software to MATLAB), S Chand Publishing, 2012.

E-Resources

- https://onlinecourses.nptel.ac.in/noc24_ph36/preview
- https://onlinecourses.nptel.ac.in/noc24_ma15/preview
- https://help.scilab.org/docs/2025.1.0/en US/ode.html

Course Outcomes:

After learning the contents of this paper, the student must be able to

- 1. Develop programs in Python/Scilab to compute Eigenvalues and Eigenvectors.
- 2. Implement numerical methods in Python/Scilab to solve algebraic and transcendental equations.
- 3. Apply Python/Scilab to solve linear systems of equations.
- 4. Write code to obtain numerical solutions of first-order ordinary differential equations.
- 5. Implement algorithms to solve higher-order linear differential equations with constant coefficients using Python/Scilab.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes(PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2		
CO1	3	2	2	1	3	ı	1	1	-	-	1	1	2	2		
CO2	3	3	2	2	3	ı	ı	1	-	-	ı	1	2	2		
CO3	3	2	2	2	3	ı	ı	1	-	-	ı	1	2	2		
CO4	3	3	2	2	3	ı	1	ı	ı	-	ı	1	3	2		
CO5	3	3	2	2	3	-	-	-	-	-	-	1	3	2		
Average	3	2.6	2	1.8	3	-	-	-	-	-	-	1	2.4	2		

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)		3. Teo Year		
Course Code:	PRODUCTION TECHNOLOGY LAB	L	Т	Р	C
N21031	PRODUCTION TECHNOLOGY LAB	0	0	2	1

Pre-Requisites: Production Technology

Course Objectives:

- 1. To provide hands-on experience with casting, welding, forming, and machining operations.
- 2. To help students understand the working principles of manufacturing processes.
- 3. To expose students to tools, machines, and equipment used in production workshops.
- 4. To develop safety awareness and quality control in manufacturing practices.
- 5. To bridge theoretical knowledge with practical application of manufacturing methods.

List of Experiments

I. Metal Casting:

Pattern Design and making
 Sand properties
 Exercise (one casting drawing).
 Exercise (Sand properties)

3. Moulding Melting and Casting - 1 Exercise

II. Welding:

ARC Welding Lap and Butt Joint - 2 Exercises
 Spot Welding - 1 Exercise
 TIG Welding - 1 Exercise
 Plasma welding - 1 Exercise

III. Mechanical Press Working:

- 1. Blanking and Piercing operation and study of simple, compound and progressive press tool.
- 2. Hydraulic Press: Deep drawing and extrusion operation.
- 3. Bending and other operations

IV. Processing of Plastics:

1. Injection Moulding

Note: Minimum of 12 Exercises need to be performed

TEXT BOOK:

1. Dictionary of Mechanical Engineering, G.H.F. Nayler, Jaico Publishing House, 1st Edition, 1999.

Course Outcomes

At the end of the course, the student will be able to:

- CO1. Demonstrate casting practices such as pattern making and sand molding.
- CO2. Perform welding operations like arc welding, gas welding, and spot welding.
- CO3. Operate basic machining tools such as lathe, drilling, and milling machines.
- CO4. Understand sheet metal fabrication, bending, and joining processes.
- CO5. Analyze process parameters and their influence on product quality.
- **CO6.** Practice safety, accuracy, and productivity in production environments.

CO-PO/PSO Mapping

Course	Program Outcomes (POs)/Program Specific Outcomes (PSOs)													
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1	-	-	-	-	-	-	-	-	3	2	2	3	3
CO2	-	-	-	-	-	-	-	-	-	3	2	2	3	3
CO3	-	-	-	-	-	-	-	-	-	3	2	2	3	3
CO4	-	ı	-	ı	-	1	ı	1	-	3	2	3	3	3
CO5	ı	ı	-	ı	-	ı	ı	ı	-	3	2	3	3	3
Average	-	-	-	-	-	-	-	-	-	3	2	2.4	3	3

AY: 2025-26	J. B. Institute of Engineering and Technology	Е	. Tec	:h: M	E
Onwards	(UGC Autonomous)	II	Year	- I S	em
Course Code:	MATERIAL SCIENCE AND MECHANICS OF SOLIDS LAB	L	Т	Р	С
M21032	MATERIAL SCIENCE AND MECHANICS OF SOLIDS LAB	0	0	2	1

Pre-Requisites: Material Science and Metallurgy; Mechanics of Solids

Course Objectives:

Material Science:

- 1. Learn the fundamental concepts of Metallurgy and Material Science in the context of manufacturing processes.
- 2. Understand how raw materials are converted into useful products.
- 3. Gain knowledge of the basic structure and crystal arrangements of materials.
- 4. Classify and distinguish between different microstructures of steels, cast irons, and non-ferrous alloys.

Mechanics of Solids:

- 1. Understand the fundamental concepts of stress, strain, and deformation in solids.
- 2. Apply the principles to analyze structural elements such as bars, beams, and columns.
- 3. Study the engineering properties of materials in detail.
- 4. Emphasize the application of equilibrium, compatibility, and force-deformation relationships.
- 5. Introduce advanced methods of structural analysis, including the flexibility and stiffness methods.
- 6. Build upon foundational knowledge from the Engineering Mechanics course.

List of Experiments

I: Material Science:

- 1. Preparation and study of the Microstructure of pure metals like Iron, Cu and Al.
- 2. Preparation and study of the Microstructure of Mild steels, low carbon steels, high Carbon steels.
- 3. Study of the Microstructures of Various Cast Irons.
- 4. Study of the Microstructures of Aluminium alloys.
- 5. Study of the Microstructures of Copper alloys.
- 6. Hardenability of steels by Jominy End Quench Test.

II: Mechanics of Solids:

- 1. Tension test
- 2. Bending test
- 3. Torsion test
- 4. Brinell's hardness and Rockwell hardness test
- 5. Test on springs
- 6. Izod Impact and Charpy Impact test

TEXT BOOK:

- 1. Laboratory Manual in Engineering Materials, S.K. Hajra Choudhury, Asian Books Pvt. Ltd.
- 2. Laboratory Manual for Strength of Materials, J.P. Singh, Katson Books.

Course Outcomes:

At the end of the lab, the student will be able to

Material Science:

- CO1. Infer the microstructures developed for different ferrous metals.
- CO2. Infer the microstructures developed for different nonferrous metals.
- **CO3**. Correlate the microstructures, properties, performance and processing of alloys.

Mechanics of Solids:

- **CO1**. Analyze the behaviour of the solid bodies subjected to various types of loading.
- **CO2**. Apply knowledge of materials and structural elements to the analysis of simple structures.
- CO3. Undertake problem identification, formulation and solution using a range of analytical methods
- **CO4.** Analyze and interpret laboratory data relating to behaviour of structures and the materials they are made of, and undertake associated laboratory work individually and in teams.
- CO5. Expectation and capacity to undertake lifelong learning.

CO-PO/PSO Mapping

Course			Prog	ıram C	utcon	nes (Po	Os)/Pr	ogram	Speci	fic Out	comes	(PSOs)		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	-	-	1	1	-	-	-	-	1	3	2	2	3	3
CO2	-	-	-	-	-	-	-	-	-	3	2	2	3	3
CO3	-	-	-	-	-	-	-	-	-	3	2	2	3	3
CO4	1	-	-	-	-	-	-	-	1	3	2	3	3	3
CO5	ı	ı	ı	1	ı	ı	-	ı	ı	3	2	3	3	3
Average	ı	-	-	-	ı	-	-	ı	-	3	2	2.4	3	3

AY: 2025-26	J. B. Institute of Engineering and Technology	В	. Tec	h: M	E
Onwards	(UGC Autonomous)	II '	Year	- I S	em
Course Code:	FLUID MECHANICS AND HYDRAULIC MACHINES LAB	L	Т	Р	С
N21033	FLUID MECHANICS AND HIDRAULIC MACHINES LAB	0	0	2	1

Course Objectives:

- 1. To understand the basic principles of fluid mechanics.
- 2. To identify various types of flows.
- 3. To understand boundary layer concepts and flow through pipes.
- 4. To evaluate the performance of hydraulic turbines.
- 5. To understand the functioning and characteristic curves of pumps.

List of Experiments

I. Fluid Mechanics:

- 1. Venturimeter.
- 2. Orifice meter.
- 3. Friction factor for a given pipe line.
- 4. Loss of head due to sudden contraction in a pipeline.
- 5. Application of Bernoulli's Theorem.

II. Hydraulic Machinery: Performance Test on

- 1. Impact of jets on Vanes.
- 2. Pelton Wheel.
- 3. Francis Turbine.
- 4. Single Stage Centrifugal Pump.
- 5. Multi Stage Centrifugal Pump.
- 6. Reciprocating Pump.

Lab Manuals:

- 1. Fluid Mechanics and Machinery Laboratory Manual, Sadhu Singh, Khanna Publishers, 2022.
- 2. Fluid Mechanics and Hydraulic Machines, K. Subramanya, McGraw Hill Education, 2022.

Course Outcomes

At the end of the course, the student will be able to:

- **CO1**. Able to explain the effect of fluid properties on a flow system.
- CO2. Able to identify type of fluid flow patterns and describe continuity equation.
- **CO3.** To analyze a variety of practical fluid flow and measuring devices and utilize fluid mechanics principles in design.
- **CO4**. To select and analyze an appropriate turbine with reference to given situation in power plants.
- **CO5**. To estimate performance parameters of a given Centrifugal and Reciprocating pump. 6. Able to demonstrate boundary layer concepts.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	1	-	-	-	-	-	-	-	-	3	2	2	3	3		
CO2	-	-	-	-	-	-	-	-	-	3	2	2	3	3		
CO3	-	-	-	-	-	-	-	-	-	3	2	2	3	3		
CO4	-	ı	-	ı	-	1	-	1	-	3	2	3	3	3		
CO5	ı	ı	-	ı	-	ı	-	ı	-	3	2	3	3	3		
Average	-	-	-	-	_	-	_	-	-	3	2	2.4	3	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	В	B. Ted	h: M	E
Onwards	(UGC Autonomous)	II Y	Year	– II S	SEM
Course Code:	DESIGN THINKING AND IDEATION	L	Т	Р	С
N21034	DESIGN THINKING AND IDEATION	3	0	2	1

Course Objectives:

- 1. To introduce the concept and importance of design thinking in solving complex problems.
- 2. To enable students to empathize with users and identify genuine needs.
- 3. To facilitate ideation and creative thinking for problem solving.
- 4. To guide students in developing prototypes and testing solutions.
- 5. To build storytelling and communication skills for presenting ideas effectively.

Module 1:

Fundamentals of Design Thinking: Design Thinking Process: Types of the thinking process, Common methods to change the human thinking process, Design thinking: Definition, Origin of design thinking, Importance of design thinking, Design vs Design thinking, Problem solving, the need of design thinking; An approach to design thinking, Design thinking Process model, Design thinking tools. Case Studies: General, Engineering and Service applications Activities: Identify an Opportunity and Scope of the Project Explore the possibilities and prepare a design brief.

Module 2:

Empathize and Understanding User Needs: Design thinking phases, how to empathize, Role of empathy in design thinking, the purpose of empathy maps, Things to be done prior to empathy mapping, Activities during and after the session, Understanding empathy tools: Customer Journey Map, Personas. Define: Methods of Define Phase: Storytelling, Critical items diagrams, Define success Activities: Apply the methods of empathizing and Define Phases Finalize the problem Statement (User Interview practice, empathy mapping, shadowing or observation study).

Module 3:

Ideation and Generating Solutions: Challenges in idea generation, Visualize, Empathize, and Ideate method, Importance of visualizing and empathizing before ideating, Applying the method, Create Thinking, Generating Design Ideas, Lateral Thinking, Analogies, Brain storming, Mind mapping, National Group Technique, Synectic's, Development of work, Analytical Thinking, Group Activities. Ideation Tools: How Might We? (HMW), Storyboard, Brainstorming. What is design innovation? A mindset for innovation, and asking "What if?" asking "What wows?" and "What works?" Activities, Apply the methods of Ideate Phase: Generate Lots of Ideas (Brain Storming Sessions, SCAMPER Technique Activity and Rapid Sketching.

Module 4:

Prototyping and Building the Solution: What is a prototype? Prototyping as a mindset, prototype examples, prototyping for products; Why we prototype? Fidelity for prototypes, Process of prototyping, Minimum Viable prototype.

Activities: Apply the Methods of the Prototype Phase: Create prototypes for selected ideas (Paper prototyping, digital prototyping and story board creation).

Module 5:

Testing Prototypes and Validation: Prototyping for digital products: What's unique for digital

products, Preparation; Prototyping for physical products: What's unique for physical products, Preparation; Testing prototypes with users. Create a Pitch Plan for scaling up Road map for Implementation, Fine tuning and Submission of the project report Activities: Collect feedback; iterate and improve the ideas Present your solution using the Storytelling method (Usability testing, Feedback Grid Exercise and Iteration Activity) Capstone Activity: Mini Design Challenge: Apply all stages of design thinking on a real-world problem provided by industry/community.

TEXT BOOKS

- 1. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, Tim Brown, HarperCollins Publishers Ltd., 2009.
- 2. Design Thinking for Strategic Innovation, Idris Mootee, John Wiley and Sons Inc., 2013.

TOOLS AND TECHNIQUES USED:

Sticky Notes, Whiteboards, Canva, Figma, TinkerCAD, Mind Mapping tools, Sketching Kits, Empathy Maps, Journey Maps and related softwares.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Understand the principles and stages of the design thinking process.
- 2. Apply empathy and user research tools to understand user needs.
- 3. Use ideation techniques like brainstorming and mind mapping to generate solutions.
- 4. Develop and refine prototypes through iterative testing.
- 5. Present solutions using storytelling and plan for implementation.
- 6. Collaborate on real, world challenges using end to end design thinking.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO2	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO3	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO4	3	2	3	3	-	-	-	-	-	-	-	-	3	3		
CO5	3	2	3	3	ı	ı	1	ı	-	-	-	-	3	3		
Average	3	2	2.4	3	-	-	-	-	_	-	-	-	3	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME						
Onwards	(UGC Autonomous)	II '	Year	– II S	SEM			
Course Code:	KINEMATICS OF MACHINERY	L	Т	Р	С			
N2203A	KINEMATICS OF MACHINERY	3 (0	3			

Pre-Requisites: Basic principles of Mechanics

Course Objectives:

- 1. To introduce the concept of machines, mechanisms and related terminologies and the relative motion, velocity, and accelerations of the various elements in a mechanism.
- 2. To make the students become familiar with the most commonly used mechanisms such as four bar, slider crank, double slider crank mechanisms and their inversions.
- 3. To provide an overview of straightline motion mechanisms, steering mechanisms and Hooke's joint.
- 4. To familiarize higher pairs like cams and principles of cams design.
- 5. To understand the kinematic analysis of gears and gear trains.

Module 1:

Unit 1: Mechanisms: Elements or Links, Classification, Rigid Link, Flexible and Fluid link, Types of kinematics pairs, Sliding, Turning, Rolling, Screw and spherical pairs, Lower and Higher pairs, Closed and open pairs, Constrained motion, Completely, Partially or successfully and incompletely constrained.

Unit 2: Mechanism and Machines: Mobility of Mechanisms: Grubler's criterion, classification of machines, Kinematics chain, Inversions of mechanism, Inversions of quadric cycle chain, Single and double slider crank chains, Mechanical Advantage.

Module 2:

Unit 1: Kinematics: Velocity and acceleration, Motion of link in machine, Determination of Velocity and acceleration, Graphical method, Application of relative velocity method.

Unit 2: Plane motion of body: Instantaneous center of rotation, Centrodes and Axodes, Three centers in line theorem, Graphical determination of instantaneous center, Determination of angular velocity of points and links by instantaneous center method. Kliens construction, Coriolis acceleration, Determination of Coriolis component of acceleration.

Unit 3: Analysis of Mechanisms: Analysis of slider crank chain for displacement, Velocity and Acceleration of slider, Acceleration diagram for a given mechanism.

Module 3:

Unit 1: Straight Line Motion Mechanisms: Exact and approximate copied and generated types, Peaucellier, Hart, Scott Russel, Grasshopper, Watt, Tchebicheff's and Robert Mechanism, Pantographs.

Unit 2: Steering Gears: Conditions for correct steering, Davis Steering gear, Ackerman's steering gear. Hooke's Joint: Single and double Hooke's joint, Velocity ratio, Application, Problems.

Module 4:

Cams and Followers: Definitions of cam and followers and their uses, Types of followers and cams, Terminology, Types of follower motions, Uniform velocity, Simple harmonic motion, Uniform acceleration and retardation. Maximum velocity and maximum acceleration during outward and return strokes. Tangent cam with Roller follower, Circular arc cam with straight, Concave and Convex flanks.

Module 5:

Gears and Gear Trains: Friction wheels and toothed gears, Types, Law of gearing, Condition for constant velocity ratio for transmission of motion, Velocity of sliding. Forms of teeth, Cycloidal and involutes profiles, Phenomena of interferences, Methods of interference. Condition for minimum number of teeth to avoid interference, Expressions for arc of contact and path of contact of Pinion, Gear, Pinion and Rack Arrangements, Introduction to Helical, Bevel and worm gearing. Introduction to Gear Trains, Types, Simple, Compound and reverted gear trains, Epicyclic gear trains. Methods of finding train value or velocity ratio of Epicyclic gear trains. Selection of gear box, Differential gear for an automobile.

TEXT BOOKS

- 1. Theory of Machines and Mechanisms, Uicker, J.J., Pennock G.R and Shigley, Oxford University Press, 4th Edition, 2014.
- 2. Theory of Machines, Thomas Bevan, CBS Publishers and Distributors, 3rd Edition, 2005.

Reference Books

- 1. A Textbook of Theory of Machines, R. K. Bansal and J. S. Brar, Laxmi Publications, 5th Revised Edition, 2010.
- 2. Theory of Machines, Sadhu Sigh, Pearson Education, 3rd Edition, 2012.
- 3. Kinematics and Dynamics of Machinery, Robert L. Norton, Tata McGraw Hill, 2009.
- 4. Mechanisms and Machine Theory, Rao. J.S. and Dukkipati. R.V., Wiley Eastern Ltd., 2nd Edition, 1992.
- 5. Theory of Machines, S.S. Rattan, Tata McGraw Hill, 4th Edition, 2014.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Understand the various elements in mechanism and the inversions of commonly used mechanisms such as four bar, slider crank and double slider crank mechanisms.
- 2. Draw the velocity and acceleration polygons for a given configuration of a mechanism.
- 3. Understand the conditions for straight line motion mechanisms, steering mechanism and the usage of Hooke's joint.
- 4. Draw the displacement diagrams and cam profile diagram for followers executing different types of motions and various configurations of followers.
- 5. Calculate the number of teeth and velocity ratio required for a given combination of gears.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO2	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO3	3	2	2	3	-	-	ı	ı	-	ı	ı	ı	3	3		
CO4	3	2	3	3	-	-	-	-	-	-	-	-	3	3		
CO5	3	2	3	3	-	-	1	ı	-	-	-	1	3	3		
Average	3	2	2.4	3	-	_	-	-	-	- 1		-	3	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME					
Onwards	(UGC Autonomous)	II Year – II SEM					
Course Code:	THERMAL ENGINEERING - I	L	Т	Р	С		
N2203B	THERMAL ENGINEERING - I	3	0	0	3		

Pre-Requisites: Thermodynamics

Course Objectives:

- 1. Explain the Components of IC Engines and systems.
- 2. Analyze the stages of combustion to improve the performance of IC engines with respect to fuel economy and control of emissions in global, environmental and social context.
- 3. Understand and evaluate the performance analysis of the major components and systems of IC engines and their applications.
- 4. Explore to the components and working principles of rotary, reciprocating, dynamic and axial compressors.
- 5. Understand the significance of gas turbines in real context in power generation

Module 1: Power Cycles and IC Engines Classification

Otto, Atkinson, Diesel and Dual Cycles, Description and representation on P-V and T-S Diagrams, Performance Parameters: Mean Effective Pressure and Thermal efficiency evaluation on Air standard basis, Comparison of Cycles, Actual Cycles and Comparison with ideal cycles Classification of IC Engines, Working principles of two and four stroke engines, SI and CI engines, Valve and Port Timing Diagrams.

Module 2: Combustion in SI Engines

Types of SI engines, Engine systems, Carburetor and Fuel Injection Systems for SI engines, Fuel injection systems for CI engines, Ignition, Cooling and Lubrication system, Fuel properties and Combustion Stoichiometry. Normal Combustion and abnormal combustion in SI engines, Importance of flame speed and effect of engine variables, Abnormal combustion, Pre-ignition and knocking in SI Engines, Fuel requirements and fuel rating, Anti-knock additives, Combustion chamber requirements.

Module 3: Combustion in CI Engines

Types of CI Engines, Four stages of combustion in CI engines, Delay period and its importance, Effect of engine variables, Diesel Knock, Need for air movement, Suction, Compression and combustion induced turbulence in Diesel engines, Open and divided combustion chambers and fuel injection, Diesel fuel requirements and fuel rating.

Module 4: Testing and Performance

Parameters of performance, Measurement of cylinder pressure, Fuel consumption, Air intake, Exhaust gas composition, Brake power, Determination of frictional losses and indicated power, Performance test, Heat balance sheet and chart.

Module 5: Compressors

Classification of compressors, Fans, Blowers and Compressors, Positive displacement and dynamic types, Reciprocating and rotary types.

Reciprocating Compressors: Principle of operation, Work required, Isothermal efficiency, Volumetric efficiency and effect of clearance volume, Staged compression, Under cooling, Saving of work, Minimum work condition for staged compression. Rotary Compressors: Rotary Compressors (Positive displacement type): Roots Blower, Vane sealed compressor, Mechanical details and principle of working, Efficiency considerations.

Dynamic Compressors: Centrifugal compressors: Mechanical details and principle of operation, Velocity and pressure variation. Energy transfer, Impeller blade shape, Losses, Slip factor, Power input factor, Pressure coefficient and adiabatic coefficient, Velocity diagrams and power.

Axial Flow Compressors: Mechanical details and principle of operation, Velocity triangles and energy transfer per stage degree of reaction, Work done factor, Isentropic Efficiency, Pressure rise calculations, Polytropic efficiency.

TEXT BOOKS

- 1. I.C. Engines, V. Ganesan, Mc Graw Hill, 4th Edition, 2010.
- 2. Thermal Engineering, Mahesh M Rathore, Tata Mc Graw Hill, 2010.

Reference Books

- 1. Applied Thermodynamics for Engineering Technologists, Eastop and McConkey, Pearson, 5th Edition, 1993.
- 2. Fundamentals of Classical Thermodynamics, Vanwylen G.J and Sonntag R.E., Wiley Eastern, 2nd Edition, 1978.
- 3. Internal Combustion Engines Fundamentals, John B. Heywood, McGraw Hill, 2nd Edition, 2018.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Elaborate the working principles of IC Engine systems and its classification.
- 2. Explore the combustion stages of SI and CI engines, and factors influence for better combustion.
- 3. Evaluate the testing and performance parameters of IC engines.
- 4. Explain the function and working principles of rotary, reciprocating, dynamic axial compressors.
- 5. Understand the working principle of gas turbine and its classification with thermodynamic analysis.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	3	-	-	-	1	-	1	-	-	3	3		
CO2	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO3	3	2	2	3	-	-	-	-	-	-	ı	-	3	3		
CO4	3	2	3	3	-	-	-	-	-	-	1	-	3	3		
CO5	3	2	3	3	-	-	-	-	-	-	-	-	3	3		
Average	3	2	2.4	3	-	-	-	-	-	-	- 1	-	3	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME						
Onwards	(UGC Autonomous)	II Year – II SEM						
Course Code:	DESIGN OF MACHINE ELEMENTS	L	Т	Р	С			
N2203B	DESIGN OF MACHINE ELEMENTS	3	0	0	3			

Note: Design Data books are not permitted in the Examinations. The design must not only satisfy strength criteria but also rigidity criteria.

Pre-Requisites: Engineering mechanics, mechanics of solids.

Course Objectives:

- 1. To introduce the basic principles of machine component design.
- 2. To understand the various modes of failure in mechanical components under different loading conditions
- 3. To learn how to apply theories of failure in the safe design of machine elements.
- 4. To develop the ability to design mechanical components like joints, couplings, shafts, and springs.
- 5. To familiarize with the use of standard codes and design data books in mechanical design.

Module 1: Introduction

General considerations in the design of Engineering Materials and their properties, Selection, Manufacturing consideration in design. Tolerances and fits, BIS codes of steels.

Design for Static Strength: Simple stresses, Combined stresses, Torsional and Bending stresses, Impact stresses, Stress - strain relationship, Theories of failure, Factor of safety, Design for strength and rigidity, Preferred numbers. The concept of stiffness in tension, Bending, Torsion and combined situations.

Module 2: Design for Fatigue Strength

Stress concentration, Theoretical stress Concentration factor–Fatigue stress concentration factor, Notch Sensitivity, Design for fluctuating stresses, Endurance limit, Estimation of Endurance strength, Gerber's curve, Goodman's line, Soderberg's line.

Module 3: Riveted, Welded and Bolted Joints

Riveted joints: Methods of failure of riveted joints, Strength equations, Efficiency of riveted joints, Eccentrically loaded riveted joints.

Welded Joints: Design of fillet welds, axial loads, Circular fillet welds under bending, Torsion. Welded joints under eccentric loading.

Bolted joints: Design of bolts with pre-stresses, Design of joints under eccentric loading – locking devices, bolts of uniform strength.

Module 4: Keys, Cotters and Knuckle Joints

Design of keys, Stresses in keys, Cotter joints, Spigot and Socket, Sleeve and Cotter, Gib and Cotter joints, Knuckle joints.

Module 5: Shafts and Couplings

Design of solid and hollow shafts for strength and rigidity, Design of shafts for combined bending and axial loads, Shaft sizes, BIS code. Gaskets and seals (stationary and rotary). Rigid couplings: Muff, Split muff and Flange couplings. Flexible couplings: Flange coupling (Modified).

TEXT BOOKS

- 1. Mechanical Engineering Design, Joseph Edward Shigley, McGraw Hill, 10th Edition, 2022.
- 2. Design of Machine Elements, V.B. Bhandari, McGraw-Hill, 5th Edition, 2010...

Reference Books

- 1. Theory of Machines, Dr. N.C. Pandya and Dr. C.S. Shah, Charotar Publishing House Pvt. Ltd., 21st Edition, 2022.
- 2. Design of Machine Elements I, Anup Goel, Technical Publications, 2020.
- 3. Machine Design, Jindal, Pearson, 1st Edition, 2010.
- 4. Design of Machine Elements, V. M. Faires, Macmillan, 4th Edition, 1965.
- 5. Design of Machine Elements I, M.H Annaiah, New Age International Publishers, 1st Edition, 2010.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Analyze stress and strain in mechanical components and predict failure using appropriate criteria.
- 2. Design machine elements like bolts, riveted and welded joints based on static and dynamic loading.
- 3. Design shafts, couplings, and keys considering strength and rigidity.
- 4. Select and design helical and leaf springs for energy storage applications.
- 5. Apply appropriate design standards and codes to real-world design problems.
- 6. Use design data books and manufacturer's catalogues for component selection and validation.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	3	-	-	-	-	-	1	1	-	3	3		
CO2	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO3	3	2	2	3	ı	ı	ı	ı	-	ı	ı	ı	3	3		
CO4	3	2	3	3	-	-	-	-	-	-	-	-	3	3		
CO5	3	2	3	3	-	-	-	-	-	-	-	-	3	3		
Average	3	2	2.4	3	-	-	-	-	-	-	-	-	3	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME						
Onwards	(UGC Autonomous)	II Year – II SEN						
Course Code:	INSTRUMENTATION AND CONTROL SYSTEMS	L	Т	Р	С			
N2203D	INSTRUMENTATION AND CONTROL STSTEMS	3	0	0	3			

Pre-Requisites: Mathematics - I, Thermodynamics, Basic of Electrical and Electronics Engineering.

Course Objectives:

- 1. To impart the basic knowledge of the functional blocks of measurement systems.
- 2. To provide technical understanding of various Temperature and pressure measuring instruments.
- 3. To expose the students to know the working of various physical variable Level, Flow, Speed and Acceleration measuring instruments.
- 4. To understand the working of various physical and Electrical Variables Stress, Humidity, Force, Torque and Power measuring instruments.
- 5. To understand the concept of control system and calculate transfer functions of mechanical and translational systems with different techniques.

Module 1: Principles of measurement

Measurement systems, Generalized configuration and functional description of measuring instruments, Examples. Static and Dynamic performance characteristics, Sources of errors, Classification and elimination of errors.

Measurement of Displacement: Theory and construction of various transducers to measure displacement, Using Piezo electric, Inductive, Capacitance, Resistance, Ionization and Photo electric transducers, Calibration procedures.

Module 2: Measurement of Temperature and Pressure

Measurement of Temperature: Various Principles of Measurement, Classification, Expansion Types: Bimetallic Strip, Liquid in glass Thermometer. Electrical Resistance Type: Thermistor, Thermocouple, RTD, Radiation Pyrometry, Optical Pyrometer, Changes in Chemical Phase, Fusible Indicators and Liquid crystals.

Measurement of Pressure: Different principles used, Classification, Manometers, Dead weight pressure gauge Tester (Piston gauge), Bourdon pressure gauges, Bulk modulus pressure gauges, Bellows, Diaphragm gauges. Low pressure measurement, Thermal conductivity gauges, Ionization pressure gauges, McLeod pressure gauge.

Module 3: Measurement of Level, Flow and Speed

Measurement of Level: Direct methods, Indirect methods, Capacitive, Radioactive, Ultrasonic, Magnetic, Cryogenic Fuel level indicators, Bubbler level indicators.

Flow measurement: Rotameter, Magnetic, Ultrasonic, Turbine flowmeter, Hotwire anemometer, Laser Doppler Anemometer (LDA).

Measurement of Speed: Mechanical Tachometers, Electrical tachometers, Non-contact type Stroboscope. Measurement of Acceleration and Vibration: Different simple instruments, Principles of Seismic instruments, Vibrometer and accelerometer using this principle, Piezo electric accelerometer.

Module 4: Stress, Strain Measurements

Various types of stress and strain measurements, Selection and installation of metallic strain gauges, Electrical strain gauge, Gauge factor, Method of usage of resistance strain gauge for bending, Compressive and tensile strains, Temperature compensation techniques, Use of strain gauges for measuring torque, Strain gauge Rosettes.

Measurement of Humidity: Moisture content of gases, Sling Psychrometer, Absorption Psychrometer, Dew point meter. Measurement of Force, Torque and Power, Elastic force meters, load cells, Torsion meters, Dynamometers.

Module 5: Elements of Control Systems

Introduction, Importance, Classification, Open and closed systems, Servomechanisms, Examples with block diagrams, Temperature, speed and position control systems, Transfer functions, First and Second order mechanical systems.

TEXT BOOKS

- 1. Principles of Industrial Instrumentation and Control Systems, Chennakesava R Alavala, Cengage Learning, 1st Edition, 2009.
- 2. Instrumentation Operations, Measurement, Scope and Application of Instruments, N.V.S. Raju, B.S. Publications, 2016.

Reference Books

- 1. Measurement Systems: Applications and design, E. O. Doebelin, TMH, Tata Mcgraw Hill, 6th Edition, 2017.
- 2. Mechanical Measurements and Control, D. S. Kumar, Metropolitan Book Co. Pvt. Ltd., 2015.
- 3. Instrumentation, Measurement and Analysis, B.C. Nakra and K.K. Choudhary, TMH, 4th Edition, 2016.
- 4. Experimental Methods for Engineers, Jack P. Holman, Mc Graw Hill, 8th Edition, 2011.
- 5. Mechanical and Industrial Measurements, R. K. Jain, Khanna Publishers, 11th Edition, 1995.
- 6. Mechanical Measurements, Sirohi and Radhakrishna, New Age International, 3rd Edtn, 2013.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Know the basic knowledge of the functional blocks of measurement systems.
- 2. Describe the working of various physical variable Temperature and pressure measuring instruments.
- 3. Explain the working of various physical variable Level, flow, Speed and Acceleration measuring instruments.
- 4. Understand the working of various physical and Electrical Variables Stress, Humidity, Force, Torque and Power measuring instruments.
- 5. Understand the concept of control system and calculate transfer functions of mechanical and translational systems with different techniques.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO2	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
СОЗ	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO4	3	2	3	3	-	-	-	-	-	-	1	-	3	3		
CO5	3	2	3	3	-	-	-	-	-	-	-	-	3	3		
Average	3	2	2.4	3	-	-	-	-	-	-	-	-	3	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	Е	. Tec	h: M	E
Onwards	(UGC Autonomous)	II '	ear	– II S	SEM
Course Code:	OPERATIONS RESEARCH	L	Т	Р	С
N2203E	OPERATIONS RESEARCH	2	0	0	2

Course Objectives:

- 1. To introduce the principles of Operations Research and its applications in engineering and management.
- 2. To develop problem-solving skills for linear programming, transportation, and assignment problems.
- 3. To understand and apply models for decision making, queuing theory, and inventory control.
- 4. To formulate real-world problems using operations research tools.
- 5. To use optimization techniques for resource allocation and scheduling.

Module 1:

Introduction and LPP: Definition of Operations Research, Characteristics and phases of OR, Types of models, Operations Research models, applications. Linear Programming Problem Formulation, Graphical solution, Simplex method. Artificial variable techniques: Two-phase method, Big- M method.

Module 2:

Transportation problem: Formulation, Optimal solution, Unbalanced transportation problem, Degeneracy.

Assignment problem: Formulation, Optimal solution, Variants of Assignment problem, Travelling salesman problem.

Module 3:

Sequencing: Introduction, Flow, Shop sequencing, n jobs through two machines – n jobs through three machines, Job shop sequencing, Two jobs through 'm' machines.

Replacement: Introduction, Replacement of items that deteriorate with time, When money value is not counted and counted, Replacement of items that fail completely, Group Replacement.

Module 4: Stress, Strain Measurements

Theory of Games: Introduction, Terminology, Solution of games with saddle points and without saddle points. 2×2 games, Dominance principle, $m \times 2$ and $2 \times n$ games, Graphical method.

Inventory: Introduction, Single item, Deterministic models, Wilson, Harris Model, EOQ Derivation, Shortages model, Continuous Supply Model, P- System and Q- System. Purchase inventory models with one price break and multiple price breaks, Stochastic models.

Module 5:

Waiting lines: Introduction, Terminology, Single channel, Poisson arrivals and Exponential service times with infinite population.

Dynamic Programming: Introduction, Terminology, Bellman's principle of optimality, Applications of Dynamic programming, Shortest path problem, Linear programming problem.

TEXT BOOKS

- 1. Operations Research Theory and Applications, J. K. Sharma, Trinity, 6th Edition, 2016.
- 2. Operations Research, NVS Raju, BSP Publications, 1st Edition, 2019.

Reference Books

- 1. Operations Research, S. D. Sharma, Kedar Nath Ram Nath, 2020th edition, 2014.
- 2. Operations Research: An Introduction, Hamdy A. Taha, PHI, 10th Edition, 2017.
- 3. Introduction to Operations Research, Hillierand Lieberman, McGraw Hill, 7th Edition, 2002.
- 4. Operations Research, A. M. Natarajan, P. Balasubramaniam and A. Tamilarasi, Pearson Education, 3rd Edition, 2020.
- 5. Operations Research, Wagner, PHI Publications, 2nd Edition, 1975.
- 6. Operations Research, M.V. Durga Prasad, K. Vijaya Kumar Reddy and J. Suresh Kumar, Cengage Learning, 1st Edition, 2012.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Formulate and solve linear programming problems using graphical and simplex methods.
- 2. Apply transportation and assignment models to practical situations.
- 3. Use decision-making tools like game theory and decision trees under uncertainty.
- 4. Analyze waiting lines and inventory systems using queuing and inventory models.
- 5. Solve project scheduling problems using PERT and CPM techniques.
- 6. Utilize operations research methods for optimization in manufacturing and service systems.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO2	3	2	2	3	-	-	-	-	-	-	-	-	3	3		
CO3	3	2	2	3	-	-	-	-	-	-	ı	-	3	3		
CO4	3	2	3	3	ı	1	ı	-	ı	-	-	ı	3	3		
CO5	3	2	3	3	ı	ı	1	ı	1	-	-	1	3	3		
Average	3	2	2.4	3	-	-	-	-	-		ı	-	3	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	Е	B. Ted	ch: M	E
Onwards	(UGC Autonomous)	II \	Year	– II S	SEM
Course Code:	INNOVATION AND ENTREPRENEURSHIP	L	Т	Р	С
N220EA	INNOVATION AND ENTREPRENEURSHIP	2	0	0	2

Course Objectives:

- 1. To highlight the relevance of creative thinking in the context of Innovation and Entrepreneurship.
- 2. To provide an overview of the models of creative problem solving.
- 3. To impart knowledge of the models and methods of developing creative intelligence.
- 4. To provide an overview of innovation management and theories of outsourcing new product development.
- 5. To provide a micro and macro perspective of innovation.

Module 1:

The Creativity Phenomenon: Creative Cerebration, Creative Personality and Motivation, Creative Environment, Creative Technology, Creativity Training Puzzles of Creativity, Spiritual and Social Roots of Creativity, Essence, Elaborative and Expressive Creativities, Quality of Creativity, Existential, Entrepreneurial and Empowerment Creativities, Criteria for Evaluating Creativity, Credible Evaluation, Improving the Quality of our Creativity.

Module 2:

Mastering Creative Problem Solving: Structuring of ill-defined problems, Creative Problem Solving, Models of Creative Problem Solving, Mechanisms of Divergent Thinking, Useful Mechanisms of Convergent Thinking, Techniques of Creative Problem solving

Module 3:

Creative Intelligence: Creative Intelligence Abilities, A Model of Creative Intelligence, Convergent Thinking Ability, Traits Congenial to Creativity, Creative Personality and Forms of Creativity, Motivation and Creativity, Blocks to Creativity: Fears and Disabilities, Strategies for Unblocking Energy of your Creativity, Designing Creativogenic Environment.

Module 4:

Innovation Management: Concept of Innovation, Levels of Innovation: Incremental Vs Radical Innovation, Inbound and Outbound Ideation, Open and Other Innovative Ideation Methods. Theories of Outsourcing New Product Development: Transaction Cost, Resource Based, Resource Dependence, Knowledge Based Theories.

Module 5:

Micro and Macro Perspectives of Innovation: Systems Approach to Innovation- Innovation in the context of Emerging Economies, Organizational Factors affecting Innovation at the Firm Level, Leadership and Innovations, Open Innovation, Innovation Framework, Innovations Developed by Open Technology Communities.

Suggested Readings

- 1. Mike Kennard, *Innovation and Entrepreneurship*, Routledge, 2021.
- 2. Paul Trott, Innovation Management and New Product Development, 4e, Pearson, 2018.

- 3. Vinnie Jauhari, Sudanshu Bhushan, Innovation Management, Oxford Higher Education, 2014.
- 4. C.S.G. Krishnamacharyulu, R. Lalitha, *Innovation Management*, Himalaya Publishing House, 2010.
- 5. Pradip N. Khandwalla, Lifelong Creativity, An Unending Quest, Tata McGraw Hill, 2004.
- 6. Brian Clegg, Paul Birch, Creativity, Kogan Page, 2009.
- 7. A. Dale Timpe, Creativity, Jaico Publishing House, 2003.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Gain an understanding of the concepts and processes of creativity and appreciate the need for improving the quality of creativity.
- 2. Learn the methods of creative problem solving.
- 3. Orient themselves on developing creative intelligence and unblock their creative energies.
- 4. Learn the concepts and methods of innovation and ideation and the theories of outsourcing new product development.
- 5. Develop a perspective of micro and macro level innovation.

CO-PO/PSO Mapping

Course			Prog	gram C	Outcon	nes (Po	Os)/Pr	ogram	Speci	fic Outo	comes	(PSOs)		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	3	-	-	-	-	-	-	-	-	3	3
CO2	3	2	2	3	-	-	-	-	-	-	-	-	3	3
CO3	3	2	2	3	ı	ı	ı	ı	ı	-	ı	ı	3	3
CO4	3	2	3	3	-	-	-	-	1	-	-	-	3	3
CO5	3	2	3	3	ı	ı	ı	ı	ı	-	-	ı	3	3
Average	3	2	2.4	3	-	-	-	-	-	-	-	-	3	3

AY: 2025-26	J. B. Institute of Engineering and Technology	Е	B. Ted	:h: M	E
Onwards	(UGC Autonomous)	II \	Year	– II S	SEM
Course Code:	CONVENTIONAL AND COMPUTER AIDED	L	Т	Р	С
N22031	MACHINE DRAWING	0	0	2	1

Prerequisites: Engineering graphics

Course Objectives:

- 1. To understand the principles and standards of engineering and machine drawing.
- 2. To develop skills in visualizing and creating orthographic views of machine components.
- 3. To learn part modeling and assembly drawing using CAD tools.
- 4. To interpret symbols, tolerances, and fits used in machine drawing.
- 5. To prepare detailed drawings of mechanical parts and assemblies as per industry standards.

List of Experiments:

Drawing of Machine Elements and Simple parts:

Selection of Views, additional views for the following machine elements and parts with every drawing proportion.

- 1. Screw threads, nuts and bolts, set screws.
- 2. Keys, cotter joints and knuckle joint.
- 3. Rivetted joints.
- 4. Shaft coupling, spigot and socket pipe joint.
- 5. Journal, pivot and collar and foot step bearings.

Drawing of Machine Elements: Using Computer aided drafting in addition to conventional drawing

Assembly Drawings:

Drawing of assembled views for the part drawing of the following using conventions and easy drawing proportions.

- 1. Steam engine parts, Stuffing box, Cross head, Eccentric.
- 2. Machine tool parts: Tail stock, Tool Post, Machine Vices.
- 3. Other machine parts: Screw jack, Connecting rod, Plumber block, Fuel Injector.
- 4. Valves: Steam stop valve, spring loaded safety valve, feed check valve and air cock.

Assembly Drawings: Using Computer aided drafting in addition to conventional drawing

NOTE:

- 1. First angle projection to be adopted.
- 2. All the drawing components, Assembly to be drawn using any Computer aided drafting packages.

TEXT BOOKS

- 1. Machine Drawing, N.D.Bhatt, Charotar Publication, 51st Edition, 2022.
- 2. Machine Drawing with Auto CAD, Goutham Pohit and Goutam Ghosh, Pearson, 2016.

Reference Books

- 1. Machine Drawing, Bhattacharyya, Oxford, 2011.
- 2. Machine Drawing, Ajeet Singh, Mc Graw Hill, 2nd Edition, 2012.

Note: External examination is conducted in conventional mode and internal evaluation to be done by both conventional as well as using computer aided drafting.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Interpret and apply BIS conventions for machine drawing.
- 2. Draw orthographic views, sectional views, and dimensioned drawings of machine components.
- 3. Understand the concepts of limits, fits, and tolerances used in engineering design.
- 4. Create part models and assembly drawings using AutoCAD or other drafting software.
- 5. Develop detailed production-ready drawings for various machine elements and assemblies.
- 6. Visualize, model, and document complete assemblies as per standard practice.

CO-PO/PSO Mapping

Course		Program Outcomes (POs)/Program Specific Outcomes (PSOs)														
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
CO1	-	-	-	-	-	-	-	-	-	2	3	2	3	3		
CO2	-	-	-	-	-	-	-	-	-	2	3	2	3	3		
CO3	-	-	-	-	-	-	-	-	-	2	3	2	3	3		
CO4	-	-	-	-	-	-	-	-	-	3	3	3	3	3		
CO5	-	-	-	-	-	-	-	-	-	3	3	3	3	3		
Average	ı	-	-	-	ı	-	ı	ı	-	2.4	3	2.4	3	3		

AY: 2025-26	J. B. Institute of Engineering and Technology	В	B. Tec	h: M	E
Onwards	(UGC Autonomous)	II Y	Year	- II S	SEM
Course Code:	INSTRUMENTATION AND CONTROL SYSTEMS LAB	L	Т	Р	С
N22032	INSTRUMENTATION AND CONTROL STSTEMS LAB	0	0	2	1

Prerequisites: Basic principles of Instrumentation and control systems

Course Objectives:

- To provide hands-on experience in calibration and characterization of various measuring instruments.
- 2. To develop skills in identifying and analyzing measurement errors.
- 3. To enable students to perform data analysis using regression techniques.
- 4. To familiarize students with modern instrumentation used in industrial process control.

List of Experiments

I: Calibration and Study of:

- 1. Pressure Gauges.
- 2. Transducer for temperature measurement.
- 3. LVDT transducer for displacement measurement.
- 4. Strain gauge for temperature measurement.
- 5. Thermocouple for temperature measurement.
- 6. Capacitive transducer for angular displacement.
- 7. Photo and magnetic speed pickups for the measurement of speed.
- 8. Resistance Temperature Detector (RTD) for temperature measurement.
- 9. Rotameter for flow measurement.
- 10. Seismic pickup for the measurement of vibration amplitude of an engine bed at various loads.
- 11. McLeod gauge for low pressure.

II: Measurement and control:

- 1. Study of D.C position control system.
- 2. Study of D.C speed control system.

Note: Perform a minimum of any 12 out of the 13 Experiments.

LAB MANUALS:

- 1. Laboratory Manual for Instrumentation and Control Engineering, S. R. Vijayalakshmi, Vikas Publishing House, 2021.
- 2. Instrumentation and Control Systems Lab Manual, Dr. A. K. Mittal and Dr. A. K. Bandyopadhyay, S. K. Kataria and Sons, 2020.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Characterize and calibrate measuring devices.
- 2. Identify and analyze errors in measurement.
- 3. Analyze measured data using regression analysis.
- 4. Calibration of Pressure Gauges, temperature, LVDT, capacitive transducer, rotameter.

CO-PO/PSO Mapping

Course			Prog	gram C	outcon	nes (Po	Os)/Pr	ogram	Speci	fic Out	comes	(PSOs)		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1	-	-	-	-	-	-	-	1	2	3	2	3	3
CO2	-	-	-	-	-	-	-	-	-	2	3	2	3	3
СОЗ	-	-	-	-	-	-	-	-	-	2	3	2	3	3
CO4	-	ı	1	ı	ı	1	-	-	-	3	3	3	3	3
CO5	-	-	-	-	-	-	-	-	-	3	3	3	3	3
Average	-	-	_	-	-	-	-	-	-	2.4	3	2.4	3	3

AY: 2025-26	J. B. Institute of Engineering and Technology	Е	B. Tec	ch: M	E
Onwards	(UGC Autonomous)	II \	Year	– II S	SEM
Course Code:	THERMAL ENGINEERING- I LAB	L	Т	Р	С
N22033	I HERMAL ENGINEERING- I LAB	0	0	2	1

Prerequisites: Thermodynamics and Thermal Engineering – I

Course Objectives:

- 1. To provide practical knowledge of the working and performance of internal combustion engines and air compressors.
- 2. To familiarize students with various testing methods like Morse test, retardation test, and heat balance.
- 3. To enhance the understanding of the effect of different parameters such as air-fuel ratio and compression ratio on engine performance.
- 4. To impart hands on experience in dismantling and assembling of engine components.
- 5. To introduce basic operations and applications of boilers and their accessories

List of Experiments

I. C. Engines:

- 1. Valve Timing Diagram.
- 2. Port Timing Diagram.
- 3. Performance Test for 4 Stroke SI engines.
- 4. Performance Test for 2 Stroke SI engines.
- 5. Morse, Motoring Tests.
- 6. Heat Balance CI, SI Engines.
- 7. Economical Speed Test on a SI engine.
- 8. Effect of Air Fuel Ratio in a SI engine.
- 9. Performance Test on a 4 Stroke CI Engine at constant speed.

Other Experiments:

- 1. Volumetric efficiency of Air Compressor Unit.
- 2. Disassembly, Assembly of Engines.
- 3. Study of Boilers.

Note: Perform a minimum of any 10 out of the 12 Experiments.

LAB MANUALS:

- 1. Internal Combustion Engines Laboratory Manual, Dr. K. Sudhakar and Dr. S. Ramasamy, VSRD Academic Publishing, 2021.
- 2. Thermal Engineering Lab Manual, Er. R.K. Rajput and Er. R.S. Khurmi, S. Chand Publications, 2022.

Course Outcomes:

At the end of the course, students will be able to:

- 1. Understand the working principles of internal combustion engines and air compressors.
- 2. Perform experiments to evaluate the performance of two-stroke and four-stroke SI and CI engines.
- 3. Conduct various tests like Morse, Retardation, Motoring, and Heat Balance on engines.

- 4. Analyze the effect of air, fuel ratio and compression ratio on engine performance.
- 5. Study volumetric efficiency of air compressors and understand their operational characteristics.
- 6. Disassemble and assemble engine components and study the function of boilers.

CO-PO/PSO Mapping

Course			Prog	gram C	outcon	nes (Po	Os)/Pr	ogram	Speci	fic Out	comes	(PSOs)		
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	-	-	-	-	-	-	-	-	-	2	3	2	3	3
CO2	-	-	-	-	-	-	-	-	-	2	3	2	3	3
CO3	-	-	-	-	-	-	-	-	-	2	3	2	3	3
CO4	-	-	-	-	1	1	-	-	-	3	3	3	3	3
CO5	-	-	-	-	-	-	-	-	-	3	3	3	3	3
Average	-	-	-	-	ı	-	-	-	-	2.4	3	2.4	3	3

AY: 2025-26 Onwards	J. B. Institute of Engineering and Technology (UGC Autonomous)	_		h: M	_
Course Code:	INDIAN KNOWLEDGE SYSTEM	L	Т	Р	С
N2200C	INDIAN KNOWLEDGE SYSTEM	2	0	0	0

Bharat is considered one of the oldest civilizations of the world. Some of the archaeological evidences Bproved the existence of Indus Valley Civilization in 7000 B.C. Bhartiya traditions, culture, cultural activities, rituals, sacraments, painting, art of dancing, art of singing etc. is being practised till the modern times without knowing scientific approaches behind that. Eternity of Indian knowledge system proved itself that not only many rituals but also many traditions, many streams of knowledge like astrology, mathematics, physics, chemistry, biology, language studies, yoga and meditation had been following from the starting till now with some changes, in the form of traditions.

This course is for undergraduate students to inculcate Indian values. It will promote advance study and inter disciplinary research on all aspects of the Indian knowledge system

Course Objectives:

- 1. To provide a tribune of the rich culture and traditions of Indian knowledge system to students of various disciplines.
- 2. To introduce historical account on the education and scientific literature available in ancient Indian traditions and its connections with ancient Indian Philosophy
- 3. To give insights about the applications of Bharatiya Jnana Parampara
- 4. To introduce Indian approach towards health and wellbeing
- 5. To elaborate vast contribution of ancient Indian researchers, engineers, scientists and architects to the modern world.

Module 1: Introduction to Indian Knowledge Systems:

Meaning, Nature, Scope and Salient Aspects of Bharatiya Jnana Parampara - Introduction to Vedas, Upanishads, Vidya, Kala, Jnana, Shastra - Practices and Continuity of Tradition

Module 2: Overview of History of Indian Education and Scientific Literature

Gurukul System - Role of Sanskrit in Natural Language Processing - Scientific Literature - Vedic Literature - Available Scientific Treatises – Interlinkings

Module 3: Introduction to Scientific Theories from Pure Sciences from Ancient Indian Knowledge Systems

Overview of theories from available ancient Indian Literature about Physics, Chemistry and Mathematics - Interlinkings and applications

Module 4: Introduction to Ancient Indian Wellness Systems

Concept of Wellness - Yoga System - Ayurveda System - Ancient Indian Aesthetics

Module 5: Development of Engineering, Science, Technology & Fine Arts in India

Various Industries - Silk, Cotton and Ship Building - Evolution of Indian Fine Arts - Cave and Temple Architecture, Vastu - Vidya, Sculpture, Forts and Stepwells, Observatories and Paintings - Music and Natyakala - Cultural Traditions & Folk Arts.

Pedagogy for Teachers: Apart from Class Room Instruction, the following Methods are Suggested.

- 1. Project based activities and learning.
- 2. Presentation and case studies.
- 3. Film screening and book reviews.
- 4. Visit to historical places, archives centre, research centre or library nearby.

Note: Activities mentioned above are only suggestive. Teacher-educators should encourage students to be innovative.

TEXT BOOKS:

- B. Mahadevan, Bhat Vinayak and Nagendra Pavan R.N., (2022) 'Introduction to Indian Knowledge Systems: Concepts and Applications' PHI learning PVT, New Delhi ISBN [9789391818203]
- 2. Dharmapal (1971) 'Indian Science and Technology in the Eighteenth Century'. Other India Press, Goa.
- 3. Kapil Kapoor, Singh Avdhesh Kumar, (2005) 'Indian Knowledge Systems' D.K. Printworld (P)Ltd. ISBN 10: 8124603367 / ISBN 13: 9788124603369
- 4. Chakradeo, Ujwala, Temples of Bharat, Aayu Publications, New Delhi, 2024.
- 5. D.N. Bose, S.N. Sen and B. V. Subbarayappa, A Concise History of Science in India, Indian National Science Academy, New Delhi, 2009.
- 6. Datta B. and A. N. Singh, History of Hindu Mathematics: Parts I and II, Asia Publishing House, Bombay, 1962.
- 7. Kapoor, K. (2021), Indian Knowledge System: Nature, Philosophy, Character in Indian
- 8. Knowledge System, vol. 1, Pub. Indian Institute of Advanced Studies, Shimla
- 9. Mahadevan, B., Bhat, V.R., Pavana, N. (2022), Philosophical Systems, in Introduction to Indian Knowledge System, Pub. PHI Learning, New Delhi.
- 10. Mahadevan, B., Bhat, V.R., Pavana, N. (2022), Knowledge: Framework and Classification, in
- 11. Introduction to Indian Knowledge System, Pub. PHI Learning, New Delhi.

Video Resources:

- 1. Introductory lectures by Prof. Gauri Mahulikar
- 2. Introductory lectures by Prof. Kapil Kapoor

E-Resources:

- https://iksin dia.org/index.php
- Official Website of IKS- Indian Knowledge System
- https://www.youtube.com/watch?v=uKcf-hSlcUE
- > Address by Prof Kapil Kapoor | Indian Institute of Advanced Study (FDP 2021)
- https://www.youtube.com/watch?v=MDJTXNiH2_A
- > Mukul Kanitkar on Bharatiya Knowledge System
- https://www.youtube.com/watch?v=uARMhv97pjk
- https://www.youtube.com/watch?v=oTwgf56GbsA
- Scientific History of India | Mukul Kanitkar Lecture in DTU
- https://youtu.be/gNJNmPJqXJc?si=WFBbuUT65mLZzpOW
- Ancient India's Scientific Achievements & Contribution in Mathematics, Astronomy, Science & Medicine

Course Outcomes:

At the end of the course, the student will be able to:

- **CO1:** Understand nature, scope and related fields of Indian knowledge system.
- CO2: Demonstrate the scientific literature available in ancient Indian traditions.
- CO3: Understanding the application of Bharatiya Jnana Parampara.
- CO4: Understand Indian approach towards Wellbeing
- **CO5:** Appreciate vast contribution of ancient Indian researchers, engineers, scientists and architects to the modern world.

AY: 2025-26	J. B. Institute of Engineering and Technology	B. Tech: ME				
Onwards	(UGC Autonomous)	II Year-II Sem				
Course Code:	LINGUASKILL FOR PROFESSIONALS-B2	L	Т	Р	С	
N2200D	(Audit Course)	2	0	0	0	

Pre-Requisites: A1-B1 levels (CEFR)

COURSE OBJECTIVES:

To enable students

- 1. Acquire an extensive range of vocabulary related to diverse topics.
- 2. Enhance pronunciation skills, focusing on specific sounds and intonation patterns
- 3. Improve the use of various grammar concepts
- 4. Strengthen listening, speaking, reading, and writing skills across different proficiency levels
- 5. Develop practical language skills for everyday communication scenarios

Module 1 (6L)

UNIT-1

Grammar: Tenses, Clauses and Conditionals, Questions

Vocabulary: Character adjectives, Words connected with 'get', trying and succeeding

Pronunciation: Letter 'e' and 'g'; Rapid speech, Intonation in Question tags

UNIT-2

Everyday English: Breaking off a conversation; Explaining and checking understanding; Agreeing; giving compliments and responding

- **Listening:** Listening Activity 1, Listening Activity 2 (A1 Level)
- **Reading:** Reading Activity 1, Reading Activity 2 (A1 Level)
- **Speaking:** Speaking Activity 1, Speaking Activity 2 (A1 Level)

Writing: Articles, Guidelines

Module 2 (6L)

UNIT-1

Grammar: Multi-word verbs; used to and would

Vocabulary: Words related to ability, achievements and sports; cause and result

Pronunciation: Constant sounds; sound 'u'; word stress

UNIT -2

Everyday English: Making suggestions; describing photos; expressing disagreement

- **Listening:** Listening Activity 1, Listening Activity 2 (A2 Level)
- Reading: Reading Activity 1, Reading Activity 2 (A2 Level)
- Speaking: Speaking Activity 1, Speaking Activity 2 (A2 Level)

Writing: Job Application, For and against essay

Module 3 (6L)

UNIT-1

Grammar: Infinitives and -ing forms; passives

Vocabulary: Attitude adjectives; words related to natural world and travel

Pronunciation: Sound 'th'; consonant clusters; intonation

UNIT-2

Everyday English: Responding to an idea; Discussing advantages and disadvantages

• **Listening:** Listening Activity 1, Listening Activity 2 (B1 Level)

• **Reading:** Reading Activity 1, Reading Activity 2 (B1 Level)

• Speaking: Speaking Activity 1, Speaking Activity 2 (B1 Level)

Writing: Travel blog, Complaint email

Module 4 (6L)

UNIT-1

Grammar: too, enough, so/such

Vocabulary: Words related to life in cities, money and finance, crime and film

Pronunciation: Sound 'o', 'I'

UNIT-2

Everyday English: Imagining, vague language, encouraging

• **Listening:** Listening Activity 1, Listening Activity 2 (B1+ Level)

• **Reading:** Reading Activity 1, Reading Activity 2 (B1+ Level)

Speaking: Speaking Activity 1, Speaking Activity 2 (B1+ Level)

Writing: Review, Opinion essay

Module 5 (6L)

UNIT-1

Grammar: Relative clause, reported speech

Vocabulary: Words related to health, thought and knowledge

Pronunciation: Sound 'ui'; linking

UNIT-2

Everyday English: Expressing uncertainty, clarifying a misunderstanding, interrupting and announcing a news

• **Listening:** Listening Activity 1, Listening Activity 2 (B2 Level)

Reading: Reading Activity 1, Reading Activity 2 (B2 Level)

• **Speaking:** Speaking Activity 1, Speaking Activity 2 (B2 Level)

Writing: Story

Text Books

1. Doff, Adrian, et al. *Empower Second Edition Student's Book with Digital Pack: B2 Upper Intermediate*. Cambridge University Press, 2022.

Reference Books

1. Cullen, Pauline, et al. The Official Cambridge Guide to IELTS for Academic and General Training: Student's Book with Answers. with DVD-ROM. Cambridge Univ. Press, 2014.

E-Resources

- 1. Cambridge English
- 2. English with Cambridge YouTube
- 3. BBC Learning English Learn English with BBC Learning English Homepage
- 4. https://englishonline.britishcouncil.org/

Course Outcomes

At the end of the course, the student will be able to:

CO1. Demonstrate a diverse vocabulary repertoire, facilitating better expression and comprehension.

CO2. Exhibit intelligible pronunciation skills, ensuring clearer oral communication.

CO3. Utilise various grammar concepts accurately and coherently.

CO4. Strengthened language skills across listening, speaking, reading, and writing.

CO5. Apply practical language skills effectively in everyday communication scenarios.

CO-PO/PSO Mapping

Course Outcomes	Program Outcomes (POs)/Program Specific Outcomes (PSOs)													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	-	-	-	-	-	-	-	-	2	2	-	3	-	-
CO2	1	-	-	-	-	-	-	-	2	2	-	3	-	-
СОЗ	-	-	-	-	-	-	-	-	2	2	-	3	-	-
CO4	-	-	-	-	-	-	-	-	2	2	-	3	-	-
CO5	-	-	-	-	-	-	-	-	2	2	-	3	-	-
Average	-	-	-	-	-	-	-	-	2	2	-	3	-	-